面向支持仅追加时态数据库的大查询工作负载的最佳快照实体化

Amin Beiraimi, K. Pu, Ying Zhu
{"title":"面向支持仅追加时态数据库的大查询工作负载的最佳快照实体化","authors":"Amin Beiraimi, K. Pu, Ying Zhu","doi":"10.1109/BigDataCongress.2018.00048","DOIUrl":null,"url":null,"abstract":"We present several results on optimal snapshot materialization for append-only temporal databases in order to support very large scale query workload. Our data model is temporal relational data stored in an append-only database. When the temporal database receives multiple queries querying at different timestamps along the timeline, it would be prohibitively expensive to recompute the snapshots at each of the timestamps. In this paper, we present a practical solution to support large query load by materializing m snapshots at optimal timestamps. We show that optimal snapshot timestamps can be computed efficiently in linear time. We further show that with varying query load, we can dynamically adjust snapshots to adjust to the changin query load.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Optimal Snapshot Materialization to Support Large Query Workload for Append-Only Temporal Databases\",\"authors\":\"Amin Beiraimi, K. Pu, Ying Zhu\",\"doi\":\"10.1109/BigDataCongress.2018.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present several results on optimal snapshot materialization for append-only temporal databases in order to support very large scale query workload. Our data model is temporal relational data stored in an append-only database. When the temporal database receives multiple queries querying at different timestamps along the timeline, it would be prohibitively expensive to recompute the snapshots at each of the timestamps. In this paper, we present a practical solution to support large query load by materializing m snapshots at optimal timestamps. We show that optimal snapshot timestamps can be computed efficiently in linear time. We further show that with varying query load, we can dynamically adjust snapshots to adjust to the changin query load.\",\"PeriodicalId\":177250,\"journal\":{\"name\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2018.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了支持非常大规模的查询工作负载,我们给出了几个关于仅追加时态数据库的最佳快照物化的结果。我们的数据模型是存储在仅追加数据库中的时态关系数据。当临时数据库接收到沿时间轴在不同时间戳处查询的多个查询时,在每个时间戳处重新计算快照的成本会非常高。在本文中,我们提出了一个实用的解决方案,通过在最佳时间戳物化m个快照来支持大型查询负载。我们证明了最优快照时间戳可以在线性时间内有效地计算出来。我们进一步展示了在不同的查询负载下,我们可以动态调整快照以适应不断变化的查询负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Optimal Snapshot Materialization to Support Large Query Workload for Append-Only Temporal Databases
We present several results on optimal snapshot materialization for append-only temporal databases in order to support very large scale query workload. Our data model is temporal relational data stored in an append-only database. When the temporal database receives multiple queries querying at different timestamps along the timeline, it would be prohibitively expensive to recompute the snapshots at each of the timestamps. In this paper, we present a practical solution to support large query load by materializing m snapshots at optimal timestamps. We show that optimal snapshot timestamps can be computed efficiently in linear time. We further show that with varying query load, we can dynamically adjust snapshots to adjust to the changin query load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信