基于模型测试的多目标搜索

Rui Wang, Cyrille Artho, L. Kristensen, V. Stolz
{"title":"基于模型测试的多目标搜索","authors":"Rui Wang, Cyrille Artho, L. Kristensen, V. Stolz","doi":"10.1109/QRS51102.2020.00029","DOIUrl":null,"url":null,"abstract":"This paper presents a search-based approach relying on multi-objective reinforcement learning and optimization for test case generation in model-based software testing. Our approach considers test case generation as an exploration versus exploitation dilemma, and we address this dilemma by implementing a particular strategy of multi-objective multi-armed bandits with multiple rewards. After optimizing our strategy using the jMetal multi-objective optimization framework, the resulting parameter setting is then used by an extended version of the Modbat tool for model-based testing. We experimentally evaluate our search-based approach on a collection of examples, such as the ZooKeeper distributed service and PostgreSQL database system, by comparing it to the use of random search for test case generation. Our results show that test cases generated using our search-based approach can obtain more predictable and better state/transition coverage, find failures earlier, and provide improved path coverage.","PeriodicalId":301814,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-objective Search for Model-based Testing\",\"authors\":\"Rui Wang, Cyrille Artho, L. Kristensen, V. Stolz\",\"doi\":\"10.1109/QRS51102.2020.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a search-based approach relying on multi-objective reinforcement learning and optimization for test case generation in model-based software testing. Our approach considers test case generation as an exploration versus exploitation dilemma, and we address this dilemma by implementing a particular strategy of multi-objective multi-armed bandits with multiple rewards. After optimizing our strategy using the jMetal multi-objective optimization framework, the resulting parameter setting is then used by an extended version of the Modbat tool for model-based testing. We experimentally evaluate our search-based approach on a collection of examples, such as the ZooKeeper distributed service and PostgreSQL database system, by comparing it to the use of random search for test case generation. Our results show that test cases generated using our search-based approach can obtain more predictable and better state/transition coverage, find failures earlier, and provide improved path coverage.\",\"PeriodicalId\":301814,\"journal\":{\"name\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS51102.2020.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS51102.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于多目标强化学习和优化的基于搜索的基于模型的软件测试用例生成方法。我们的方法将测试用例生成视为探索与利用的困境,并且我们通过实现具有多个奖励的多目标多武装强盗的特定策略来解决这个困境。在使用jMetal多目标优化框架优化我们的策略之后,结果参数设置将被Modbat工具的扩展版本用于基于模型的测试。我们在一组示例(如ZooKeeper分布式服务和PostgreSQL数据库系统)上对基于搜索的方法进行了实验评估,并将其与使用随机搜索生成测试用例进行了比较。我们的结果表明,使用基于搜索的方法生成的测试用例可以获得更可预测和更好的状态/转换覆盖,更早地发现故障,并提供改进的路径覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective Search for Model-based Testing
This paper presents a search-based approach relying on multi-objective reinforcement learning and optimization for test case generation in model-based software testing. Our approach considers test case generation as an exploration versus exploitation dilemma, and we address this dilemma by implementing a particular strategy of multi-objective multi-armed bandits with multiple rewards. After optimizing our strategy using the jMetal multi-objective optimization framework, the resulting parameter setting is then used by an extended version of the Modbat tool for model-based testing. We experimentally evaluate our search-based approach on a collection of examples, such as the ZooKeeper distributed service and PostgreSQL database system, by comparing it to the use of random search for test case generation. Our results show that test cases generated using our search-based approach can obtain more predictable and better state/transition coverage, find failures earlier, and provide improved path coverage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信