基于时间序列生成对抗网络的地磁干扰综合数据生成

Anna Zhang, Pooria Dehghanian, M. Stevens, Jonathan Snodgrass, T. Overbye
{"title":"基于时间序列生成对抗网络的地磁干扰综合数据生成","authors":"Anna Zhang, Pooria Dehghanian, M. Stevens, Jonathan Snodgrass, T. Overbye","doi":"10.1109/TPEC56611.2023.10078544","DOIUrl":null,"url":null,"abstract":"A key challenge to Geomagnetic Disturbance (GMD) studies is the scarcity of severe geomagnetic field data available to researchers due to its low event occurrence. This study aims to address this challenge by first creating realistic “synthetic” data that represents the geomagnetic field fluctuations caused by recent GMD events. This paper utilizes a machine-learning approach to generate synthetic geomagnetic field data. Specifically, the application and preliminary results of a modified form of the generative adversarial network (GAN) to create time-series synthetic geomagnetic field data of three different severities are described here. The purpose of this paper is to document the first step towards creating severe synthetic geomagnetic field data to advance power system research. Future studies beyond this paper will extend on this work to generate data representing severe GMD storms.","PeriodicalId":183284,"journal":{"name":"2023 IEEE Texas Power and Energy Conference (TPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Geomagnetic Field Data Creation for Geomagnetic Disturbance Studies using Time-series Generative Adversarial Networks\",\"authors\":\"Anna Zhang, Pooria Dehghanian, M. Stevens, Jonathan Snodgrass, T. Overbye\",\"doi\":\"10.1109/TPEC56611.2023.10078544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key challenge to Geomagnetic Disturbance (GMD) studies is the scarcity of severe geomagnetic field data available to researchers due to its low event occurrence. This study aims to address this challenge by first creating realistic “synthetic” data that represents the geomagnetic field fluctuations caused by recent GMD events. This paper utilizes a machine-learning approach to generate synthetic geomagnetic field data. Specifically, the application and preliminary results of a modified form of the generative adversarial network (GAN) to create time-series synthetic geomagnetic field data of three different severities are described here. The purpose of this paper is to document the first step towards creating severe synthetic geomagnetic field data to advance power system research. Future studies beyond this paper will extend on this work to generate data representing severe GMD storms.\",\"PeriodicalId\":183284,\"journal\":{\"name\":\"2023 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC56611.2023.10078544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC56611.2023.10078544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地磁干扰(GMD)研究面临的一个关键挑战是,由于其事件发生频率低,研究人员可以获得的强磁场数据很少。这项研究的目的是通过首先创建真实的“合成”数据来解决这一挑战,这些数据代表了最近GMD事件引起的地磁场波动。本文利用机器学习方法生成合成地磁场数据。具体来说,本文描述了一种改进形式的生成对抗网络(GAN)在创建三种不同强度的时间序列合成地磁场数据中的应用和初步结果。本文的目的是记录创建强合成地磁场数据以推进电力系统研究的第一步。本文之外的未来研究将在此基础上进行扩展,以生成代表严重GMD风暴的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Geomagnetic Field Data Creation for Geomagnetic Disturbance Studies using Time-series Generative Adversarial Networks
A key challenge to Geomagnetic Disturbance (GMD) studies is the scarcity of severe geomagnetic field data available to researchers due to its low event occurrence. This study aims to address this challenge by first creating realistic “synthetic” data that represents the geomagnetic field fluctuations caused by recent GMD events. This paper utilizes a machine-learning approach to generate synthetic geomagnetic field data. Specifically, the application and preliminary results of a modified form of the generative adversarial network (GAN) to create time-series synthetic geomagnetic field data of three different severities are described here. The purpose of this paper is to document the first step towards creating severe synthetic geomagnetic field data to advance power system research. Future studies beyond this paper will extend on this work to generate data representing severe GMD storms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信