多分类器组合置信度评价

Hongwei Hao, Cheng-Lin Liu, H. Sako
{"title":"多分类器组合置信度评价","authors":"Hongwei Hao, Cheng-Lin Liu, H. Sako","doi":"10.1109/ICDAR.2003.1227764","DOIUrl":null,"url":null,"abstract":"For combining classifiers at measurement level, thediverse outputs of classifiers should be transformed touniform measures that represent the confidence ofdecision, hopefully, the class probability or likelihood.This paper presents our experimental results of classifiercombination using confidence evaluation. We test threetypes of confidences: log-likelihood, exponential andsigmoid. For re-scaling the classifier outputs, we usethree scaling functions based on global normalizationand Gaussian density estimation. Experimental results inhandwritten digit recognition show that via confidenceevaluation, superior classification performance can beobtained using simple combination rules.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Confidence evaluation for combining diverse classifiers\",\"authors\":\"Hongwei Hao, Cheng-Lin Liu, H. Sako\",\"doi\":\"10.1109/ICDAR.2003.1227764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For combining classifiers at measurement level, thediverse outputs of classifiers should be transformed touniform measures that represent the confidence ofdecision, hopefully, the class probability or likelihood.This paper presents our experimental results of classifiercombination using confidence evaluation. We test threetypes of confidences: log-likelihood, exponential andsigmoid. For re-scaling the classifier outputs, we usethree scaling functions based on global normalizationand Gaussian density estimation. Experimental results inhandwritten digit recognition show that via confidenceevaluation, superior classification performance can beobtained using simple combination rules.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

为了在度量水平上组合分类器,分类器的不同输出应该转换为代表决策置信度的统一度量,希望是类概率或似然。本文给出了基于置信度评价的分类器组合的实验结果。我们测试了三种类型的信心:对数似然,指数和s型。为了重新缩放分类器输出,我们使用了基于全局归一化和高斯密度估计的三个缩放函数。手写体数字识别的实验结果表明,通过置信度评价,使用简单的组合规则可以获得较好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confidence evaluation for combining diverse classifiers
For combining classifiers at measurement level, thediverse outputs of classifiers should be transformed touniform measures that represent the confidence ofdecision, hopefully, the class probability or likelihood.This paper presents our experimental results of classifiercombination using confidence evaluation. We test threetypes of confidences: log-likelihood, exponential andsigmoid. For re-scaling the classifier outputs, we usethree scaling functions based on global normalizationand Gaussian density estimation. Experimental results inhandwritten digit recognition show that via confidenceevaluation, superior classification performance can beobtained using simple combination rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信