使用在线学习的多处理器soc温度管理

A. Coskun, T. Simunic, K. Gross
{"title":"使用在线学习的多处理器soc温度管理","authors":"A. Coskun, T. Simunic, K. Gross","doi":"10.1145/1391469.1391693","DOIUrl":null,"url":null,"abstract":"In deep submicron circuits, thermal hot spots and high temperature gradients increase the cooling costs, and degrade reliability and performance. In this paper, we propose a low-cost temperature management strategy for multicore systems to reduce the adverse effects of hot spots and temperature variations. Our technique utilizes online learning to select the best policy for the current workload characteristics among a given set of expert policies. We achieve 20% and 60% average decrease in the frequency of hot spots and thermal cycles respectively in comparison to the best performing expert, and reduce the spatial gradients to below 5%.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Temperature management in multiprocessor SoCs using online learning\",\"authors\":\"A. Coskun, T. Simunic, K. Gross\",\"doi\":\"10.1145/1391469.1391693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In deep submicron circuits, thermal hot spots and high temperature gradients increase the cooling costs, and degrade reliability and performance. In this paper, we propose a low-cost temperature management strategy for multicore systems to reduce the adverse effects of hot spots and temperature variations. Our technique utilizes online learning to select the best policy for the current workload characteristics among a given set of expert policies. We achieve 20% and 60% average decrease in the frequency of hot spots and thermal cycles respectively in comparison to the best performing expert, and reduce the spatial gradients to below 5%.\",\"PeriodicalId\":412696,\"journal\":{\"name\":\"2008 45th ACM/IEEE Design Automation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 45th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1391469.1391693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

在深亚微米电路中,热热点和高温梯度增加了冷却成本,降低了可靠性和性能。在本文中,我们提出了一种低成本的多核系统温度管理策略,以减少热点和温度变化的不利影响。我们的技术利用在线学习在一组给定的专家策略中选择适合当前工作负载特征的最佳策略。与表现最好的专家相比,我们在热点和热循环频率上分别实现了20%和60%的平均下降,并将空间梯度降低到5%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature management in multiprocessor SoCs using online learning
In deep submicron circuits, thermal hot spots and high temperature gradients increase the cooling costs, and degrade reliability and performance. In this paper, we propose a low-cost temperature management strategy for multicore systems to reduce the adverse effects of hot spots and temperature variations. Our technique utilizes online learning to select the best policy for the current workload characteristics among a given set of expert policies. We achieve 20% and 60% average decrease in the frequency of hot spots and thermal cycles respectively in comparison to the best performing expert, and reduce the spatial gradients to below 5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信