玻尔兹曼-泊松电子输运模型不连续伽辽金解的边界条件影响

Jose A. Morales Escalante, I. Gamba
{"title":"玻尔兹曼-泊松电子输运模型不连续伽辽金解的边界条件影响","authors":"Jose A. Morales Escalante, I. Gamba","doi":"10.1109/IWCE.2014.6865873","DOIUrl":null,"url":null,"abstract":"In this paper we perform, by means of Discontinuous Galerkin (DG) Finite Element Method (FEM) based numerical solvers for Boltzmann-Poisson (BP) semiclassical models of hot electronic transport in semiconductors, a numerical study of reflective boundary conditions in the BP system, such as specular reflection, diffusive reflection, and a mixed convex combination of these reflections, and their effect on the behavior of the solution. A boundary layer effect is observed in our numerical simulations for the kinetic moments related to diffusive and mixed reflection.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Boundary conditions effects by Discontinuous Galerkin solvers for Boltzmann-Poisson models of electron transport\",\"authors\":\"Jose A. Morales Escalante, I. Gamba\",\"doi\":\"10.1109/IWCE.2014.6865873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we perform, by means of Discontinuous Galerkin (DG) Finite Element Method (FEM) based numerical solvers for Boltzmann-Poisson (BP) semiclassical models of hot electronic transport in semiconductors, a numerical study of reflective boundary conditions in the BP system, such as specular reflection, diffusive reflection, and a mixed convex combination of these reflections, and their effect on the behavior of the solution. A boundary layer effect is observed in our numerical simulations for the kinetic moments related to diffusive and mixed reflection.\",\"PeriodicalId\":168149,\"journal\":{\"name\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2014.6865873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文利用基于不连续伽辽金(DG)有限元法(FEM)的数值求解方法,对半导体热电子输运的Boltzmann-Poisson (BP)半经典模型进行了数值研究,研究了BP系统中的反射边界条件,如镜面反射、扩散反射和这些反射的混合凸组合,以及它们对解行为的影响。在数值模拟中,我们观察到边界层效应与扩散反射和混合反射有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary conditions effects by Discontinuous Galerkin solvers for Boltzmann-Poisson models of electron transport
In this paper we perform, by means of Discontinuous Galerkin (DG) Finite Element Method (FEM) based numerical solvers for Boltzmann-Poisson (BP) semiclassical models of hot electronic transport in semiconductors, a numerical study of reflective boundary conditions in the BP system, such as specular reflection, diffusive reflection, and a mixed convex combination of these reflections, and their effect on the behavior of the solution. A boundary layer effect is observed in our numerical simulations for the kinetic moments related to diffusive and mixed reflection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信