均质链结构

T. Ohkuma
{"title":"均质链结构","authors":"T. Ohkuma","doi":"10.2996/kmj/1138843293","DOIUrl":null,"url":null,"abstract":"Especially, for any pair of elements a, b of X, the set of elements between (properly) a and b is an interval of X, which we ca31 an open interval (a, b). The set oϊ upper bounds and the set of lower bounds of an element a of X, excluding the element a, are also called (unbounded) open intervals, and are denoted by (a,-) and (-, a) respectively. When two elements a and b are adjoined to the open interval (a, bj, we call it a closed interval [a, bl [a, b) denotes the interval (a, b)with adjoined a only, (a, b], [a, ) , and (-, a] are similarly defined*,","PeriodicalId":318148,"journal":{"name":"Kodai Mathematical Seminar Reports","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structure of homogeneous chains\",\"authors\":\"T. Ohkuma\",\"doi\":\"10.2996/kmj/1138843293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Especially, for any pair of elements a, b of X, the set of elements between (properly) a and b is an interval of X, which we ca31 an open interval (a, b). The set oϊ upper bounds and the set of lower bounds of an element a of X, excluding the element a, are also called (unbounded) open intervals, and are denoted by (a,-) and (-, a) respectively. When two elements a and b are adjoined to the open interval (a, bj, we call it a closed interval [a, bl [a, b) denotes the interval (a, b)with adjoined a only, (a, b], [a, ) , and (-, a] are similarly defined*,\",\"PeriodicalId\":318148,\"journal\":{\"name\":\"Kodai Mathematical Seminar Reports\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Seminar Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj/1138843293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Seminar Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/kmj/1138843293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

特别地,对于X的任意一对元素a, b, a与b之间的元素集合是X的区间,我们可以称之为开区间(a, b)。X的一个元素a(不包括元素a)的上界集和下界集也称为(无界)开区间,分别用(a,-)和(-,a)表示。当两个元素a和b与开区间(a, bj)相邻时,我们称其为闭区间[a, bl] [a, b]表示仅与a相邻的区间(a, b), (a, b], [a,),和(-,a]同样定义*。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure of homogeneous chains
Especially, for any pair of elements a, b of X, the set of elements between (properly) a and b is an interval of X, which we ca31 an open interval (a, b). The set oϊ upper bounds and the set of lower bounds of an element a of X, excluding the element a, are also called (unbounded) open intervals, and are denoted by (a,-) and (-, a) respectively. When two elements a and b are adjoined to the open interval (a, bj, we call it a closed interval [a, bl [a, b) denotes the interval (a, b)with adjoined a only, (a, b], [a, ) , and (-, a] are similarly defined*,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信