{"title":"基于表面等离子体共振的光学光管传感器","authors":"S. Shen, K. Johnston, S. Yee","doi":"10.1117/12.245579","DOIUrl":null,"url":null,"abstract":"In this paper, a novel optical sensor using surface plasmon resonance in a symmetrical planar lightpipe is introduced. The new design utilizes a microscope slide with beveled ends as the sensor substrate. Collimated TM polarized white light is used to interrogate the sensing surface at a single angle. Preliminary experimental results for glycerol solutions from 0.6%wt to 16%wt demonstrate a concentration sensitivity of 3.4 multiplied by 10-4 by weight. The corresponding refractive index sensitivity is estimated as 4 by 10-5.","PeriodicalId":293004,"journal":{"name":"Pacific Northwest Fiber Optic Sensor","volume":"2872 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optical lightpipe sensor based on surface plasmon resonance\",\"authors\":\"S. Shen, K. Johnston, S. Yee\",\"doi\":\"10.1117/12.245579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel optical sensor using surface plasmon resonance in a symmetrical planar lightpipe is introduced. The new design utilizes a microscope slide with beveled ends as the sensor substrate. Collimated TM polarized white light is used to interrogate the sensing surface at a single angle. Preliminary experimental results for glycerol solutions from 0.6%wt to 16%wt demonstrate a concentration sensitivity of 3.4 multiplied by 10-4 by weight. The corresponding refractive index sensitivity is estimated as 4 by 10-5.\",\"PeriodicalId\":293004,\"journal\":{\"name\":\"Pacific Northwest Fiber Optic Sensor\",\"volume\":\"2872 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Northwest Fiber Optic Sensor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.245579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Northwest Fiber Optic Sensor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.245579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical lightpipe sensor based on surface plasmon resonance
In this paper, a novel optical sensor using surface plasmon resonance in a symmetrical planar lightpipe is introduced. The new design utilizes a microscope slide with beveled ends as the sensor substrate. Collimated TM polarized white light is used to interrogate the sensing surface at a single angle. Preliminary experimental results for glycerol solutions from 0.6%wt to 16%wt demonstrate a concentration sensitivity of 3.4 multiplied by 10-4 by weight. The corresponding refractive index sensitivity is estimated as 4 by 10-5.