一种改进的遗传蚁群优化算法求解旅行商问题

Lanlan Kang, Wenliang Cao
{"title":"一种改进的遗传蚁群优化算法求解旅行商问题","authors":"Lanlan Kang, Wenliang Cao","doi":"10.1109/ISISE.2010.126","DOIUrl":null,"url":null,"abstract":"Ant Colony Algorithm (ACA) and Generation Algorithm (GA) are two bionic optimization algorithm, they are also two powerful and effective algorithms for solving the combination optimization problems, moreover they all were successfully used in traveling salesman problem (TSP) . This paper syncretizes two algorithms, meanwhile, a new syncretic method is put forward. The simulation results show that the new algorithm of ACA and GA is better at improving global convergence and quickening the speed of convergence.","PeriodicalId":206833,"journal":{"name":"2010 Third International Symposium on Information Science and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Improved Genetic & Ant Colony Optimization Algorithm for Travelling Salesman Problem\",\"authors\":\"Lanlan Kang, Wenliang Cao\",\"doi\":\"10.1109/ISISE.2010.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant Colony Algorithm (ACA) and Generation Algorithm (GA) are two bionic optimization algorithm, they are also two powerful and effective algorithms for solving the combination optimization problems, moreover they all were successfully used in traveling salesman problem (TSP) . This paper syncretizes two algorithms, meanwhile, a new syncretic method is put forward. The simulation results show that the new algorithm of ACA and GA is better at improving global convergence and quickening the speed of convergence.\",\"PeriodicalId\":206833,\"journal\":{\"name\":\"2010 Third International Symposium on Information Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Symposium on Information Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISISE.2010.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Symposium on Information Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISISE.2010.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

蚁群算法(ACA)和生成算法(GA)是两种仿生优化算法,也是解决组合优化问题的两种强大而有效的算法,并且它们都成功地应用于旅行商问题(TSP)。本文对两种算法进行了融合,同时提出了一种新的融合方法。仿真结果表明,新算法在提高全局收敛性和加快收敛速度方面有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Genetic & Ant Colony Optimization Algorithm for Travelling Salesman Problem
Ant Colony Algorithm (ACA) and Generation Algorithm (GA) are two bionic optimization algorithm, they are also two powerful and effective algorithms for solving the combination optimization problems, moreover they all were successfully used in traveling salesman problem (TSP) . This paper syncretizes two algorithms, meanwhile, a new syncretic method is put forward. The simulation results show that the new algorithm of ACA and GA is better at improving global convergence and quickening the speed of convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信