使用深度特征的无监督词聚类

Mandar Kulkarni, S. Karande, S. Lodha
{"title":"使用深度特征的无监督词聚类","authors":"Mandar Kulkarni, S. Karande, S. Lodha","doi":"10.1109/DAS.2016.14","DOIUrl":null,"url":null,"abstract":"Digitization is crucial especially in the Indian context. OCR engines fail on Indian scripts mainly because character segmentation is non-trivial. Even word based recognition approaches suffer from the issues such as time degradations, word segmentation errors, font style/size variations. In this paper, we propose a deep learning architecture based approach for unsupervised word clustering. An edge responsive untrained Convolutional Neural Network (CNN) is used as a feature extractor. Graph connected component analysis is applied on the similarity graph computed from the word features. Our approach inherently detects similar shape patterns at word level and hence, it is language agnostic. We validated our approach against multiple state of art word matching techniques. Experimental results show that our approach significantly outperforms all of them on variety of data sets. In addition, the approach is observed to be robust to word segmentation errors, font style/size variations.","PeriodicalId":197359,"journal":{"name":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unsupervised Word Clustering Using Deep Features\",\"authors\":\"Mandar Kulkarni, S. Karande, S. Lodha\",\"doi\":\"10.1109/DAS.2016.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digitization is crucial especially in the Indian context. OCR engines fail on Indian scripts mainly because character segmentation is non-trivial. Even word based recognition approaches suffer from the issues such as time degradations, word segmentation errors, font style/size variations. In this paper, we propose a deep learning architecture based approach for unsupervised word clustering. An edge responsive untrained Convolutional Neural Network (CNN) is used as a feature extractor. Graph connected component analysis is applied on the similarity graph computed from the word features. Our approach inherently detects similar shape patterns at word level and hence, it is language agnostic. We validated our approach against multiple state of art word matching techniques. Experimental results show that our approach significantly outperforms all of them on variety of data sets. In addition, the approach is observed to be robust to word segmentation errors, font style/size variations.\",\"PeriodicalId\":197359,\"journal\":{\"name\":\"2016 12th IAPR Workshop on Document Analysis Systems (DAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th IAPR Workshop on Document Analysis Systems (DAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2016.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2016.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数字化是至关重要的,尤其是在印度。OCR引擎在印度脚本上失败的主要原因是字符分割不简单。即使是基于单词的识别方法也存在时间退化、分词错误、字体样式/大小变化等问题。在本文中,我们提出了一种基于深度学习架构的无监督词聚类方法。采用边缘响应的未训练卷积神经网络(CNN)作为特征提取器。将图连通成分分析应用于从词的特征计算出的相似图。我们的方法固有地在单词水平上检测相似的形状模式,因此,它是语言不可知论的。我们针对多种最先进的单词匹配技术验证了我们的方法。实验结果表明,我们的方法在各种数据集上明显优于所有这些方法。此外,该方法对分词错误、字体样式/大小变化具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Word Clustering Using Deep Features
Digitization is crucial especially in the Indian context. OCR engines fail on Indian scripts mainly because character segmentation is non-trivial. Even word based recognition approaches suffer from the issues such as time degradations, word segmentation errors, font style/size variations. In this paper, we propose a deep learning architecture based approach for unsupervised word clustering. An edge responsive untrained Convolutional Neural Network (CNN) is used as a feature extractor. Graph connected component analysis is applied on the similarity graph computed from the word features. Our approach inherently detects similar shape patterns at word level and hence, it is language agnostic. We validated our approach against multiple state of art word matching techniques. Experimental results show that our approach significantly outperforms all of them on variety of data sets. In addition, the approach is observed to be robust to word segmentation errors, font style/size variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信