计划项目的背包问题

Q2 Mathematics
Fabián Díaz-Núñez , Franco Quezada , Óscar C. Vásquez
{"title":"计划项目的背包问题","authors":"Fabián Díaz-Núñez ,&nbsp;Franco Quezada ,&nbsp;Óscar C. Vásquez","doi":"10.1016/j.endm.2018.07.038","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a new variant of the knapsack problem, where the contribution of each item on total profit is determined by its position in the knapsack via a specific function. While in the classic version this function could be considered a constant, we study two non-monotone convex functions motived by several real applications. We propose a binary linear programming (BLP) model and a polynomial time algorithm, called <em>Greedy</em>. Computational experiments are carried out, discussing practical and theoretical aspects of the problem resolution.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.07.038","citationCount":"2","resultStr":"{\"title\":\"The knapsack problem with scheduled items\",\"authors\":\"Fabián Díaz-Núñez ,&nbsp;Franco Quezada ,&nbsp;Óscar C. Vásquez\",\"doi\":\"10.1016/j.endm.2018.07.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a new variant of the knapsack problem, where the contribution of each item on total profit is determined by its position in the knapsack via a specific function. While in the classic version this function could be considered a constant, we study two non-monotone convex functions motived by several real applications. We propose a binary linear programming (BLP) model and a polynomial time algorithm, called <em>Greedy</em>. Computational experiments are carried out, discussing practical and theoretical aspects of the problem resolution.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.07.038\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318301884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了背包问题的一个新变体,其中每个项目对总利润的贡献是由其在背包中的位置通过一个特定的函数决定的。在经典的版本中,这个函数可以被认为是一个常数,我们研究了两个由几个实际应用驱动的非单调凸函数。我们提出了一个二元线性规划(BLP)模型和一个多项式时间算法,称为贪心。进行了计算实验,讨论了问题解决的实际和理论方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The knapsack problem with scheduled items

We consider a new variant of the knapsack problem, where the contribution of each item on total profit is determined by its position in the knapsack via a specific function. While in the classic version this function could be considered a constant, we study two non-monotone convex functions motived by several real applications. We propose a binary linear programming (BLP) model and a polynomial time algorithm, called Greedy. Computational experiments are carried out, discussing practical and theoretical aspects of the problem resolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Discrete Mathematics
Electronic Notes in Discrete Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信