基于机器学习的FDD海量Mimo系统信道估计的最优导频序列设计

Hayder Al-Salihi, Mohammed Al-Gharbawi, F. Said
{"title":"基于机器学习的FDD海量Mimo系统信道估计的最优导频序列设计","authors":"Hayder Al-Salihi, Mohammed Al-Gharbawi, F. Said","doi":"10.23919/ITUK53220.2021.9662117","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of channel estimation for large scale Multiple-Input Multiple-Output (MIMO) systems, in which the main challenge that limits the functionality ofmassive MIMO is the acquisition of precise Channel State Information (CSI). We introduce an efficient channel estimation approach based on a block Sparse Bayesian Learning (SBL) that exploits the temporal common sparsity of channel coefficients. Furthermore, an optimal pilot approach to reduce the pilot overhead is derived. The optimal pilot is obtained by minimizing the Mean Square Error (MSE) of the proposed SBL estimator using Semi-Definite Programming (SDP). Simulation results demonstrate that the SBL-based approach is more robust than conventional methods when fewer training pilots are used.","PeriodicalId":423554,"journal":{"name":"2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Pilot Sequence Design for Machine Learning Based Channel Estimation in FDD Massive Mimo Systems\",\"authors\":\"Hayder Al-Salihi, Mohammed Al-Gharbawi, F. Said\",\"doi\":\"10.23919/ITUK53220.2021.9662117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of channel estimation for large scale Multiple-Input Multiple-Output (MIMO) systems, in which the main challenge that limits the functionality ofmassive MIMO is the acquisition of precise Channel State Information (CSI). We introduce an efficient channel estimation approach based on a block Sparse Bayesian Learning (SBL) that exploits the temporal common sparsity of channel coefficients. Furthermore, an optimal pilot approach to reduce the pilot overhead is derived. The optimal pilot is obtained by minimizing the Mean Square Error (MSE) of the proposed SBL estimator using Semi-Definite Programming (SDP). Simulation results demonstrate that the SBL-based approach is more robust than conventional methods when fewer training pilots are used.\",\"PeriodicalId\":423554,\"journal\":{\"name\":\"2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ITUK53220.2021.9662117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ITUK53220.2021.9662117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了大规模多输入多输出(MIMO)系统的信道估计问题,其中限制大规模MIMO功能的主要挑战是精确信道状态信息(CSI)的获取。在此基础上,提出了一种减少导频开销的最优导频方法。利用半确定规划(Semi-Definite Programming, SDP)最小化SBL估计量的均方误差(Mean Square Error, MSE),得到最优导频。仿真结果表明,当训练飞行员较少时,基于sbl的方法比传统方法具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Pilot Sequence Design for Machine Learning Based Channel Estimation in FDD Massive Mimo Systems
In this paper, we consider the problem of channel estimation for large scale Multiple-Input Multiple-Output (MIMO) systems, in which the main challenge that limits the functionality ofmassive MIMO is the acquisition of precise Channel State Information (CSI). We introduce an efficient channel estimation approach based on a block Sparse Bayesian Learning (SBL) that exploits the temporal common sparsity of channel coefficients. Furthermore, an optimal pilot approach to reduce the pilot overhead is derived. The optimal pilot is obtained by minimizing the Mean Square Error (MSE) of the proposed SBL estimator using Semi-Definite Programming (SDP). Simulation results demonstrate that the SBL-based approach is more robust than conventional methods when fewer training pilots are used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信