Sheikh Badar ud din Tahir, A. Jalal, Mouazma Batool
{"title":"在智能家居和运动数据集上使用基于smos的随机森林进行活动分析的可穿戴传感器","authors":"Sheikh Badar ud din Tahir, A. Jalal, Mouazma Batool","doi":"10.1109/ICACS47775.2020.9055944","DOIUrl":null,"url":null,"abstract":"Human activity recognition using MotionNode sensors is getting prominence effect in our daily life logs. Providing accurate information on human's activities and behaviors is one of the most challenging tasks in ubiquitous computing and human-Computer interaction. In this paper, we proposed an efficient model for having statistical features along SMO-based random forest. Initially, we processed a 1-D Hadamard transform wavelet and 1-D LBP based extraction algorithm to extract valuable features. For activity classification, we used sequential minimal optimization along with Random Forest over two benchmarks USC-HAD dataset and IMSB datasets. Experimental results show that our proposed model can compete with other state-of-the-art methods and can be effectively used to recognize robust human activities in terms of efficiency and accuracy.","PeriodicalId":268675,"journal":{"name":"2020 3rd International Conference on Advancements in Computational Sciences (ICACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Wearable Sensors for Activity Analysis using SMO-based Random Forest over Smart home and Sports Datasets\",\"authors\":\"Sheikh Badar ud din Tahir, A. Jalal, Mouazma Batool\",\"doi\":\"10.1109/ICACS47775.2020.9055944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity recognition using MotionNode sensors is getting prominence effect in our daily life logs. Providing accurate information on human's activities and behaviors is one of the most challenging tasks in ubiquitous computing and human-Computer interaction. In this paper, we proposed an efficient model for having statistical features along SMO-based random forest. Initially, we processed a 1-D Hadamard transform wavelet and 1-D LBP based extraction algorithm to extract valuable features. For activity classification, we used sequential minimal optimization along with Random Forest over two benchmarks USC-HAD dataset and IMSB datasets. Experimental results show that our proposed model can compete with other state-of-the-art methods and can be effectively used to recognize robust human activities in terms of efficiency and accuracy.\",\"PeriodicalId\":268675,\"journal\":{\"name\":\"2020 3rd International Conference on Advancements in Computational Sciences (ICACS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Advancements in Computational Sciences (ICACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACS47775.2020.9055944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Advancements in Computational Sciences (ICACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACS47775.2020.9055944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wearable Sensors for Activity Analysis using SMO-based Random Forest over Smart home and Sports Datasets
Human activity recognition using MotionNode sensors is getting prominence effect in our daily life logs. Providing accurate information on human's activities and behaviors is one of the most challenging tasks in ubiquitous computing and human-Computer interaction. In this paper, we proposed an efficient model for having statistical features along SMO-based random forest. Initially, we processed a 1-D Hadamard transform wavelet and 1-D LBP based extraction algorithm to extract valuable features. For activity classification, we used sequential minimal optimization along with Random Forest over two benchmarks USC-HAD dataset and IMSB datasets. Experimental results show that our proposed model can compete with other state-of-the-art methods and can be effectively used to recognize robust human activities in terms of efficiency and accuracy.