在智能家居和运动数据集上使用基于smos的随机森林进行活动分析的可穿戴传感器

Sheikh Badar ud din Tahir, A. Jalal, Mouazma Batool
{"title":"在智能家居和运动数据集上使用基于smos的随机森林进行活动分析的可穿戴传感器","authors":"Sheikh Badar ud din Tahir, A. Jalal, Mouazma Batool","doi":"10.1109/ICACS47775.2020.9055944","DOIUrl":null,"url":null,"abstract":"Human activity recognition using MotionNode sensors is getting prominence effect in our daily life logs. Providing accurate information on human's activities and behaviors is one of the most challenging tasks in ubiquitous computing and human-Computer interaction. In this paper, we proposed an efficient model for having statistical features along SMO-based random forest. Initially, we processed a 1-D Hadamard transform wavelet and 1-D LBP based extraction algorithm to extract valuable features. For activity classification, we used sequential minimal optimization along with Random Forest over two benchmarks USC-HAD dataset and IMSB datasets. Experimental results show that our proposed model can compete with other state-of-the-art methods and can be effectively used to recognize robust human activities in terms of efficiency and accuracy.","PeriodicalId":268675,"journal":{"name":"2020 3rd International Conference on Advancements in Computational Sciences (ICACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Wearable Sensors for Activity Analysis using SMO-based Random Forest over Smart home and Sports Datasets\",\"authors\":\"Sheikh Badar ud din Tahir, A. Jalal, Mouazma Batool\",\"doi\":\"10.1109/ICACS47775.2020.9055944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity recognition using MotionNode sensors is getting prominence effect in our daily life logs. Providing accurate information on human's activities and behaviors is one of the most challenging tasks in ubiquitous computing and human-Computer interaction. In this paper, we proposed an efficient model for having statistical features along SMO-based random forest. Initially, we processed a 1-D Hadamard transform wavelet and 1-D LBP based extraction algorithm to extract valuable features. For activity classification, we used sequential minimal optimization along with Random Forest over two benchmarks USC-HAD dataset and IMSB datasets. Experimental results show that our proposed model can compete with other state-of-the-art methods and can be effectively used to recognize robust human activities in terms of efficiency and accuracy.\",\"PeriodicalId\":268675,\"journal\":{\"name\":\"2020 3rd International Conference on Advancements in Computational Sciences (ICACS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Advancements in Computational Sciences (ICACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACS47775.2020.9055944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Advancements in Computational Sciences (ICACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACS47775.2020.9055944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

利用MotionNode传感器进行人体活动识别在我们的日常生活日志中发挥着越来越突出的作用。提供关于人类活动和行为的准确信息是普适计算和人机交互中最具挑战性的任务之一。本文提出了一种有效的随机森林统计特征模型。首先,我们处理了一维Hadamard变换小波和一维LBP提取算法来提取有价值的特征。对于活动分类,我们在两个基准USC-HAD数据集和IMSB数据集上使用了顺序最小优化和随机森林。实验结果表明,我们提出的模型可以与其他最先进的方法竞争,并且可以在效率和准确性方面有效地用于识别稳健的人类活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wearable Sensors for Activity Analysis using SMO-based Random Forest over Smart home and Sports Datasets
Human activity recognition using MotionNode sensors is getting prominence effect in our daily life logs. Providing accurate information on human's activities and behaviors is one of the most challenging tasks in ubiquitous computing and human-Computer interaction. In this paper, we proposed an efficient model for having statistical features along SMO-based random forest. Initially, we processed a 1-D Hadamard transform wavelet and 1-D LBP based extraction algorithm to extract valuable features. For activity classification, we used sequential minimal optimization along with Random Forest over two benchmarks USC-HAD dataset and IMSB datasets. Experimental results show that our proposed model can compete with other state-of-the-art methods and can be effectively used to recognize robust human activities in terms of efficiency and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信