预测密度聚集:全球GDP增长模型

Francesca Caselli, F. Grigoli, R. Lafarguette, Changchun Wang
{"title":"预测密度聚集:全球GDP增长模型","authors":"Francesca Caselli, F. Grigoli, R. Lafarguette, Changchun Wang","doi":"10.5089/9781513545653.001","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach to obtain the predictive density of global GDP growth. It hinges upon a bottom-up probabilistic model that estimates and combines single countries’ predictive GDP growth densities, taking into account cross-country interdependencies. Speci?cally,\nwe model non-parametrically the contemporaneous interdependencies across the United States,\nthe euro area, and China via a conditional kernel density estimation of a joint distribution. Then, we characterize the potential ampli?cation e?ects stemming from other large economies in each region—also with kernel density estimations—and the reaction of all other economies with para-metric assumptions. Importantly, each economy’s predictive density also depends on a set of observable country-speci?c factors. Finally, the use of sampling techniques allows us to aggregate individual countries’ densities into a world aggregate while preserving the non-i.i.d. nature of the global GDP growth distribution. Out-of-sample metrics con?rm the accuracy of our approach.","PeriodicalId":155479,"journal":{"name":"Econometric Modeling: Macroeconomics eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predictive Density Aggregation: A Model for Global GDP Growth\",\"authors\":\"Francesca Caselli, F. Grigoli, R. Lafarguette, Changchun Wang\",\"doi\":\"10.5089/9781513545653.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel approach to obtain the predictive density of global GDP growth. It hinges upon a bottom-up probabilistic model that estimates and combines single countries’ predictive GDP growth densities, taking into account cross-country interdependencies. Speci?cally,\\nwe model non-parametrically the contemporaneous interdependencies across the United States,\\nthe euro area, and China via a conditional kernel density estimation of a joint distribution. Then, we characterize the potential ampli?cation e?ects stemming from other large economies in each region—also with kernel density estimations—and the reaction of all other economies with para-metric assumptions. Importantly, each economy’s predictive density also depends on a set of observable country-speci?c factors. Finally, the use of sampling techniques allows us to aggregate individual countries’ densities into a world aggregate while preserving the non-i.i.d. nature of the global GDP growth distribution. Out-of-sample metrics con?rm the accuracy of our approach.\",\"PeriodicalId\":155479,\"journal\":{\"name\":\"Econometric Modeling: Macroeconomics eJournal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Macroeconomics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5089/9781513545653.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Macroeconomics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5089/9781513545653.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种计算全球GDP增长预测密度的新方法。它依赖于一个自下而上的概率模型,该模型估计并结合了单个国家的预测GDP增长密度,同时考虑了各国之间的相互依赖性。Speci吗?最后,我们通过联合分布的条件核密度估计,对美国、欧元区和中国同期的相互依赖性进行了非参数化建模。然后,我们描述电位的振幅?阳离子e ?来自每个地区其他大型经济体(同样采用核密度估计)和所有其他经济体(采用参数假设)的反应。重要的是,每个经济体的预测密度还取决于一组可观察到的国别指标。c的因素。最后,抽样技术的使用使我们能够将单个国家的密度汇总为一个世界总量,同时保留非i.d。全球GDP增长分布的本质。样本外指标是否存在?我怀疑我们方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Density Aggregation: A Model for Global GDP Growth
In this paper we propose a novel approach to obtain the predictive density of global GDP growth. It hinges upon a bottom-up probabilistic model that estimates and combines single countries’ predictive GDP growth densities, taking into account cross-country interdependencies. Speci?cally, we model non-parametrically the contemporaneous interdependencies across the United States, the euro area, and China via a conditional kernel density estimation of a joint distribution. Then, we characterize the potential ampli?cation e?ects stemming from other large economies in each region—also with kernel density estimations—and the reaction of all other economies with para-metric assumptions. Importantly, each economy’s predictive density also depends on a set of observable country-speci?c factors. Finally, the use of sampling techniques allows us to aggregate individual countries’ densities into a world aggregate while preserving the non-i.i.d. nature of the global GDP growth distribution. Out-of-sample metrics con?rm the accuracy of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信