基因表达数据的层次聚类

Feng Luo, Kun Tang, L. Khan
{"title":"基因表达数据的层次聚类","authors":"Feng Luo, Kun Tang, L. Khan","doi":"10.1109/BIBE.2003.1188970","DOIUrl":null,"url":null,"abstract":"Rapid development of biological technologies generates a huge amount of data, which provides a processing and global view of the gene expression levels across different conditions and over multiple stages. Analyzation and interpretation of these massive data is a challenging task. One of the most important steps is to extract useful and rational fundamental patterns of gene expression inherent in these huge data. Clustering technology is one of the useful and popular methods to obtain these patterns. In this paper we propose a new hierarchical clustering algorithm to obtain gene expression patterns. This algorithm constructs a hierarchy from top to bottom based on a self-organizing tree. It dynamically finds the number of clusters at each level. We compare our algorithm with the traditional hierarchical agglomerative clustering (HAC) algorithm. We apply our algorithm to an existing 112 rat central nervous system gene expression data. We observe that our algorithm extracts patterns with different levels of abstraction. Furthermore, our approach is useful on recognizing features in complex gene expression data.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Hierarchical clustering of gene expression data\",\"authors\":\"Feng Luo, Kun Tang, L. Khan\",\"doi\":\"10.1109/BIBE.2003.1188970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid development of biological technologies generates a huge amount of data, which provides a processing and global view of the gene expression levels across different conditions and over multiple stages. Analyzation and interpretation of these massive data is a challenging task. One of the most important steps is to extract useful and rational fundamental patterns of gene expression inherent in these huge data. Clustering technology is one of the useful and popular methods to obtain these patterns. In this paper we propose a new hierarchical clustering algorithm to obtain gene expression patterns. This algorithm constructs a hierarchy from top to bottom based on a self-organizing tree. It dynamically finds the number of clusters at each level. We compare our algorithm with the traditional hierarchical agglomerative clustering (HAC) algorithm. We apply our algorithm to an existing 112 rat central nervous system gene expression data. We observe that our algorithm extracts patterns with different levels of abstraction. Furthermore, our approach is useful on recognizing features in complex gene expression data.\",\"PeriodicalId\":178814,\"journal\":{\"name\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2003.1188970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

生物技术的快速发展产生了大量的数据,这些数据提供了不同条件和不同阶段基因表达水平的处理和全局视图。分析和解释这些海量数据是一项具有挑战性的任务。最重要的步骤之一是从这些庞大的数据中提取出有用的、合理的基因表达的基本模式。聚类技术是获得这些模式的一种有用且流行的方法。本文提出了一种新的层次聚类算法来获取基因表达模式。该算法在自组织树的基础上构造了从上到下的层次结构。它动态地查找每个级别上的集群数量。将该算法与传统的层次聚类(HAC)算法进行比较。我们将算法应用于现有的112只大鼠中枢神经系统基因表达数据。我们观察到我们的算法提取具有不同抽象级别的模式。此外,我们的方法可用于识别复杂基因表达数据中的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical clustering of gene expression data
Rapid development of biological technologies generates a huge amount of data, which provides a processing and global view of the gene expression levels across different conditions and over multiple stages. Analyzation and interpretation of these massive data is a challenging task. One of the most important steps is to extract useful and rational fundamental patterns of gene expression inherent in these huge data. Clustering technology is one of the useful and popular methods to obtain these patterns. In this paper we propose a new hierarchical clustering algorithm to obtain gene expression patterns. This algorithm constructs a hierarchy from top to bottom based on a self-organizing tree. It dynamically finds the number of clusters at each level. We compare our algorithm with the traditional hierarchical agglomerative clustering (HAC) algorithm. We apply our algorithm to an existing 112 rat central nervous system gene expression data. We observe that our algorithm extracts patterns with different levels of abstraction. Furthermore, our approach is useful on recognizing features in complex gene expression data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信