{"title":"跃变扩散过程的在线漂移估计","authors":"Theerawat Bhudisaksang, Á. Cartea","doi":"10.2139/ssrn.3540252","DOIUrl":null,"url":null,"abstract":"We show the convergence of an online stochastic gradient descent estimator to obtain the drift parameter of a continuous-time jump-diffusion process. The stochastic gradient descent follows a stochastic path in the gradient direction of a function to find a minimum, which in our case determines the estimate of the unknown drift parameter. We decompose the deviation of the stochastic descent direction from the deterministic descent direction into four terms: the weak solution of the non-local Poisson equation, a Riemann integral, a stochastic integral, and a covariation term. This decomposition is employed to prove the convergence of the online estimator and we use simulations to illustrate the performance of the online estimator.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Online Drift Estimation for Jump-Diffusion Processes\",\"authors\":\"Theerawat Bhudisaksang, Á. Cartea\",\"doi\":\"10.2139/ssrn.3540252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the convergence of an online stochastic gradient descent estimator to obtain the drift parameter of a continuous-time jump-diffusion process. The stochastic gradient descent follows a stochastic path in the gradient direction of a function to find a minimum, which in our case determines the estimate of the unknown drift parameter. We decompose the deviation of the stochastic descent direction from the deterministic descent direction into four terms: the weak solution of the non-local Poisson equation, a Riemann integral, a stochastic integral, and a covariation term. This decomposition is employed to prove the convergence of the online estimator and we use simulations to illustrate the performance of the online estimator.\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3540252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3540252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Drift Estimation for Jump-Diffusion Processes
We show the convergence of an online stochastic gradient descent estimator to obtain the drift parameter of a continuous-time jump-diffusion process. The stochastic gradient descent follows a stochastic path in the gradient direction of a function to find a minimum, which in our case determines the estimate of the unknown drift parameter. We decompose the deviation of the stochastic descent direction from the deterministic descent direction into four terms: the weak solution of the non-local Poisson equation, a Riemann integral, a stochastic integral, and a covariation term. This decomposition is employed to prove the convergence of the online estimator and we use simulations to illustrate the performance of the online estimator.