跃变扩散过程的在线漂移估计

Theerawat Bhudisaksang, Á. Cartea
{"title":"跃变扩散过程的在线漂移估计","authors":"Theerawat Bhudisaksang, Á. Cartea","doi":"10.2139/ssrn.3540252","DOIUrl":null,"url":null,"abstract":"We show the convergence of an online stochastic gradient descent estimator to obtain the drift parameter of a continuous-time jump-diffusion process. The stochastic gradient descent follows a stochastic path in the gradient direction of a function to find a minimum, which in our case determines the estimate of the unknown drift parameter. We decompose the deviation of the stochastic descent direction from the deterministic descent direction into four terms: the weak solution of the non-local Poisson equation, a Riemann integral, a stochastic integral, and a covariation term. This decomposition is employed to prove the convergence of the online estimator and we use simulations to illustrate the performance of the online estimator.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Online Drift Estimation for Jump-Diffusion Processes\",\"authors\":\"Theerawat Bhudisaksang, Á. Cartea\",\"doi\":\"10.2139/ssrn.3540252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the convergence of an online stochastic gradient descent estimator to obtain the drift parameter of a continuous-time jump-diffusion process. The stochastic gradient descent follows a stochastic path in the gradient direction of a function to find a minimum, which in our case determines the estimate of the unknown drift parameter. We decompose the deviation of the stochastic descent direction from the deterministic descent direction into four terms: the weak solution of the non-local Poisson equation, a Riemann integral, a stochastic integral, and a covariation term. This decomposition is employed to prove the convergence of the online estimator and we use simulations to illustrate the performance of the online estimator.\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3540252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3540252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们证明了一个在线随机梯度下降估计器的收敛性,以获得连续时间跳扩散过程的漂移参数。随机梯度下降沿着函数梯度方向的随机路径寻找最小值,在我们的例子中,这决定了未知漂移参数的估计。我们将随机下降方向与确定性下降方向的偏差分解为四项:非局部泊松方程的弱解、黎曼积分、随机积分和协变项。利用这种分解证明了在线估计器的收敛性,并用仿真说明了在线估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Drift Estimation for Jump-Diffusion Processes
We show the convergence of an online stochastic gradient descent estimator to obtain the drift parameter of a continuous-time jump-diffusion process. The stochastic gradient descent follows a stochastic path in the gradient direction of a function to find a minimum, which in our case determines the estimate of the unknown drift parameter. We decompose the deviation of the stochastic descent direction from the deterministic descent direction into four terms: the weak solution of the non-local Poisson equation, a Riemann integral, a stochastic integral, and a covariation term. This decomposition is employed to prove the convergence of the online estimator and we use simulations to illustrate the performance of the online estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信