遗传算法增强在目标类图像分割中的应用

N. Quang, Huynh Thi Thanh Binh, N. T. Thuy
{"title":"遗传算法增强在目标类图像分割中的应用","authors":"N. Quang, Huynh Thi Thanh Binh, N. T. Thuy","doi":"10.1109/SOCPAR.2013.7054143","DOIUrl":null,"url":null,"abstract":"We describe how a task in computer vision can be effectively resolved by employing Genetic Algorithm. This paper focuses on the problem of semantic segmentation of digital images. We propose to use an improved genetic algorithm for the learning parameters of weak classifiers in a boosting learning set up. We propose a new encoding and genetic operators in accordance with this problem. Beside that, we employed multiple image features such as texture-layout, location, color and HoG for improving the accuracy of the system. Experiments are conducted extensively on MSRC, a widely used benchmark image datasets. The experimental results demonstrate that the performance of our system is comparable to, or even outperforms the state-of-the-art algorithms in semantic segmentation.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genetic algorithm in boosting for object class image segmentation\",\"authors\":\"N. Quang, Huynh Thi Thanh Binh, N. T. Thuy\",\"doi\":\"10.1109/SOCPAR.2013.7054143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe how a task in computer vision can be effectively resolved by employing Genetic Algorithm. This paper focuses on the problem of semantic segmentation of digital images. We propose to use an improved genetic algorithm for the learning parameters of weak classifiers in a boosting learning set up. We propose a new encoding and genetic operators in accordance with this problem. Beside that, we employed multiple image features such as texture-layout, location, color and HoG for improving the accuracy of the system. Experiments are conducted extensively on MSRC, a widely used benchmark image datasets. The experimental results demonstrate that the performance of our system is comparable to, or even outperforms the state-of-the-art algorithms in semantic segmentation.\",\"PeriodicalId\":315126,\"journal\":{\"name\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2013.7054143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们描述了如何利用遗传算法有效地解决计算机视觉中的任务。本文主要研究数字图像的语义分割问题。我们提出了一种改进的遗传算法来确定弱分类器的学习参数。针对这一问题,我们提出了一种新的编码算子和遗传算子。除此之外,我们还采用了纹理布局、位置、颜色、HoG等多种图像特征来提高系统的精度。在广泛使用的基准图像数据集MSRC上进行了大量实验。实验结果表明,我们的系统在语义分割方面的性能与最先进的算法相当,甚至优于最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic algorithm in boosting for object class image segmentation
We describe how a task in computer vision can be effectively resolved by employing Genetic Algorithm. This paper focuses on the problem of semantic segmentation of digital images. We propose to use an improved genetic algorithm for the learning parameters of weak classifiers in a boosting learning set up. We propose a new encoding and genetic operators in accordance with this problem. Beside that, we employed multiple image features such as texture-layout, location, color and HoG for improving the accuracy of the system. Experiments are conducted extensively on MSRC, a widely used benchmark image datasets. The experimental results demonstrate that the performance of our system is comparable to, or even outperforms the state-of-the-art algorithms in semantic segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信