{"title":"参数化的计算解释","authors":"Jean-Philippe Bernardy, Guilhem Moulin","doi":"10.1109/LICS.2012.25","DOIUrl":null,"url":null,"abstract":"Reynolds' abstraction theorem has recently been extended to lambda-calculi with dependent types. In this paper, we show how this theorem can be internalized. More precisely, we describe an extension of the Pure Type Systems with a special parametricity rule (with computational content), and prove fundamental properties such as Church-Rosser's and strong normalization. All instances of the abstraction theorem can be both expressed and proved in the calculus itself. Moreover, one can apply parametricity to the parametricity rule: parametricity is itself parametric.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"A Computational Interpretation of Parametricity\",\"authors\":\"Jean-Philippe Bernardy, Guilhem Moulin\",\"doi\":\"10.1109/LICS.2012.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reynolds' abstraction theorem has recently been extended to lambda-calculi with dependent types. In this paper, we show how this theorem can be internalized. More precisely, we describe an extension of the Pure Type Systems with a special parametricity rule (with computational content), and prove fundamental properties such as Church-Rosser's and strong normalization. All instances of the abstraction theorem can be both expressed and proved in the calculus itself. Moreover, one can apply parametricity to the parametricity rule: parametricity is itself parametric.\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reynolds' abstraction theorem has recently been extended to lambda-calculi with dependent types. In this paper, we show how this theorem can be internalized. More precisely, we describe an extension of the Pure Type Systems with a special parametricity rule (with computational content), and prove fundamental properties such as Church-Rosser's and strong normalization. All instances of the abstraction theorem can be both expressed and proved in the calculus itself. Moreover, one can apply parametricity to the parametricity rule: parametricity is itself parametric.