稳健,可逆,纳米级,飞秒开关电路及其发展

H. D. Garis, T. Batty
{"title":"稳健,可逆,纳米级,飞秒开关电路及其发展","authors":"H. D. Garis, T. Batty","doi":"10.1109/CEC.2004.1330918","DOIUrl":null,"url":null,"abstract":"This paper introduces conceptual problems that arise in the next 10-20 years as electronic circuits reach nanometer scale, i.e. the size of molecules. Such circuits are impossible to make perfectly, due to the inevitable fabrication faults in chips with an Avogrado number of components. Hence, they need to be constructed so that they are robust to faults. They also need to be (as far as possible) reversible circuits, to avoid the heat dissipation problem if bits of information are routinely wiped out during the computational process. They also have to be local if the switching times reach femto-seconds, which is possible now with quantum optics. This paper discusses some of the conceptual issues involved in trying to build circuits that satisfy all these criteria, i.e. that they are robust, reversible and local. We propose an evolutionary engineering based model that meets all these criteria, and provide some experimental results to justify it.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"349 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robust, reversible, nano-scale, femto-second-switching circuits and their evolution\",\"authors\":\"H. D. Garis, T. Batty\",\"doi\":\"10.1109/CEC.2004.1330918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces conceptual problems that arise in the next 10-20 years as electronic circuits reach nanometer scale, i.e. the size of molecules. Such circuits are impossible to make perfectly, due to the inevitable fabrication faults in chips with an Avogrado number of components. Hence, they need to be constructed so that they are robust to faults. They also need to be (as far as possible) reversible circuits, to avoid the heat dissipation problem if bits of information are routinely wiped out during the computational process. They also have to be local if the switching times reach femto-seconds, which is possible now with quantum optics. This paper discusses some of the conceptual issues involved in trying to build circuits that satisfy all these criteria, i.e. that they are robust, reversible and local. We propose an evolutionary engineering based model that meets all these criteria, and provide some experimental results to justify it.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"349 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1330918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了未来10-20年,随着电子电路达到纳米尺度,即分子的大小,将出现的概念性问题。这样的电路是不可能完美制造的,因为芯片中不可避免的制造缺陷与阿伏格拉多数量的组件。因此,需要构造它们以使它们对错误具有鲁棒性。它们还需要(尽可能地)可逆电路,以避免在计算过程中经常丢失信息时的散热问题。如果切换时间达到飞秒,它们也必须是本地的,这在量子光学中是可能的。本文讨论了试图构建满足所有这些标准的电路所涉及的一些概念问题,即它们是鲁棒的,可逆的和局部的。我们提出了一个基于进化工程的模型,满足所有这些标准,并提供了一些实验结果来证明它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust, reversible, nano-scale, femto-second-switching circuits and their evolution
This paper introduces conceptual problems that arise in the next 10-20 years as electronic circuits reach nanometer scale, i.e. the size of molecules. Such circuits are impossible to make perfectly, due to the inevitable fabrication faults in chips with an Avogrado number of components. Hence, they need to be constructed so that they are robust to faults. They also need to be (as far as possible) reversible circuits, to avoid the heat dissipation problem if bits of information are routinely wiped out during the computational process. They also have to be local if the switching times reach femto-seconds, which is possible now with quantum optics. This paper discusses some of the conceptual issues involved in trying to build circuits that satisfy all these criteria, i.e. that they are robust, reversible and local. We propose an evolutionary engineering based model that meets all these criteria, and provide some experimental results to justify it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信