考虑嵌入向量重要性的CTR预测模型

Xiujin Shi, Yang Yang, Chen Tao
{"title":"考虑嵌入向量重要性的CTR预测模型","authors":"Xiujin Shi, Yang Yang, Chen Tao","doi":"10.1109/ICAICA52286.2021.9498074","DOIUrl":null,"url":null,"abstract":"Click-through rate (CTR) prediction plays an important role in industrial bidding advertising. Most of the deep CTR models focus on the interaction problem of capturing features after embedding layer, such as PNN, NFM, DeepFM and xDeepFM. Few models consider the importance of features before feature interaction. The ECA module proposed in CVPR2020 computer vision is an extremely lightweight plug and play module, which is used to improve the performance of various deep CNN architectures. This paper introduces the idea of ECANET to modify the model embedding layer to dynamically learn the importance of embedding features and construct a new deep CTR prediction model. ECANET and NFM model are combined to build a novel model ECANFM. The effectiveness of the model is verified by a comparative experiment on a public data set.","PeriodicalId":121979,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CTR Prediction Model Considering the Importance of Embedding Vector\",\"authors\":\"Xiujin Shi, Yang Yang, Chen Tao\",\"doi\":\"10.1109/ICAICA52286.2021.9498074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Click-through rate (CTR) prediction plays an important role in industrial bidding advertising. Most of the deep CTR models focus on the interaction problem of capturing features after embedding layer, such as PNN, NFM, DeepFM and xDeepFM. Few models consider the importance of features before feature interaction. The ECA module proposed in CVPR2020 computer vision is an extremely lightweight plug and play module, which is used to improve the performance of various deep CNN architectures. This paper introduces the idea of ECANET to modify the model embedding layer to dynamically learn the importance of embedding features and construct a new deep CTR prediction model. ECANET and NFM model are combined to build a novel model ECANFM. The effectiveness of the model is verified by a comparative experiment on a public data set.\",\"PeriodicalId\":121979,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICA52286.2021.9498074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA52286.2021.9498074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

点击率(CTR)预测在工业竞价广告中起着重要的作用。深度CTR模型大多关注嵌入层后特征捕获的交互问题,如PNN、NFM、DeepFM和xDeepFM等。很少有模型在特征交互之前考虑特征的重要性。CVPR2020计算机视觉中提出的ECA模块是一个非常轻量级的即插即用模块,用于提高各种深度CNN架构的性能。本文引入ECANET思想,对模型嵌入层进行修改,动态学习嵌入特征的重要性,构造新的深度CTR预测模型。将ECANET模型与NFM模型相结合,建立了一个新的ECANFM模型。在一个公共数据集上的对比实验验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CTR Prediction Model Considering the Importance of Embedding Vector
Click-through rate (CTR) prediction plays an important role in industrial bidding advertising. Most of the deep CTR models focus on the interaction problem of capturing features after embedding layer, such as PNN, NFM, DeepFM and xDeepFM. Few models consider the importance of features before feature interaction. The ECA module proposed in CVPR2020 computer vision is an extremely lightweight plug and play module, which is used to improve the performance of various deep CNN architectures. This paper introduces the idea of ECANET to modify the model embedding layer to dynamically learn the importance of embedding features and construct a new deep CTR prediction model. ECANET and NFM model are combined to build a novel model ECANFM. The effectiveness of the model is verified by a comparative experiment on a public data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信