班级分布不均衡的多门课学习助推

Yanmin Sun, M. Kamel, Yang Wang
{"title":"班级分布不均衡的多门课学习助推","authors":"Yanmin Sun, M. Kamel, Yang Wang","doi":"10.1109/ICDM.2006.29","DOIUrl":null,"url":null,"abstract":"Classification of data with imbalanced class distribution has posed a significant drawback of the performance attainable by most standard classifier learning algorithms, which assume a relatively balanced class distribution and equal misclassification costs. This learning difficulty attracts a lot of research interests. Most efforts concentrate on bi-class problems. However, bi-class is not the only scenario where the class imbalance problem prevails. Reported solutions for bi-class applications are not applicable to multi-class problems. In this paper, we develop a cost-sensitive boosting algorithm to improve the classification performance of imbalanced data involving multiple classes. One barrier of applying the cost-sensitive boosting algorithm to the imbalanced data is that the cost matrix is often unavailable for a problem domain. To solve this problem, we apply Genetic Algorithm to search the optimum cost setup of each class. Empirical tests show that the proposed cost-sensitive boosting algorithm improves the classification performances of imbalanced data sets significantly.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"292","resultStr":"{\"title\":\"Boosting for Learning Multiple Classes with Imbalanced Class Distribution\",\"authors\":\"Yanmin Sun, M. Kamel, Yang Wang\",\"doi\":\"10.1109/ICDM.2006.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of data with imbalanced class distribution has posed a significant drawback of the performance attainable by most standard classifier learning algorithms, which assume a relatively balanced class distribution and equal misclassification costs. This learning difficulty attracts a lot of research interests. Most efforts concentrate on bi-class problems. However, bi-class is not the only scenario where the class imbalance problem prevails. Reported solutions for bi-class applications are not applicable to multi-class problems. In this paper, we develop a cost-sensitive boosting algorithm to improve the classification performance of imbalanced data involving multiple classes. One barrier of applying the cost-sensitive boosting algorithm to the imbalanced data is that the cost matrix is often unavailable for a problem domain. To solve this problem, we apply Genetic Algorithm to search the optimum cost setup of each class. Empirical tests show that the proposed cost-sensitive boosting algorithm improves the classification performances of imbalanced data sets significantly.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"292\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 292

摘要

对类分布不平衡的数据进行分类,对大多数标准分类器学习算法所能达到的性能造成了显著的缺陷,这些算法假设了相对平衡的类分布和相等的误分类代价。这种学习困难吸引了许多研究兴趣。大多数努力都集中在双类问题上。然而,双类并不是存在类不平衡问题的唯一场景。报告的双类应用的解决方案不适用于多类问题。在本文中,我们开发了一种代价敏感的增强算法来提高涉及多个类别的不平衡数据的分类性能。将代价敏感增强算法应用于不平衡数据的一个障碍是问题域的代价矩阵通常不可用。为了解决这一问题,我们采用遗传算法来搜索每个类别的最优成本设置。实证测试表明,本文提出的代价敏感增强算法显著提高了不平衡数据集的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting for Learning Multiple Classes with Imbalanced Class Distribution
Classification of data with imbalanced class distribution has posed a significant drawback of the performance attainable by most standard classifier learning algorithms, which assume a relatively balanced class distribution and equal misclassification costs. This learning difficulty attracts a lot of research interests. Most efforts concentrate on bi-class problems. However, bi-class is not the only scenario where the class imbalance problem prevails. Reported solutions for bi-class applications are not applicable to multi-class problems. In this paper, we develop a cost-sensitive boosting algorithm to improve the classification performance of imbalanced data involving multiple classes. One barrier of applying the cost-sensitive boosting algorithm to the imbalanced data is that the cost matrix is often unavailable for a problem domain. To solve this problem, we apply Genetic Algorithm to search the optimum cost setup of each class. Empirical tests show that the proposed cost-sensitive boosting algorithm improves the classification performances of imbalanced data sets significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信