信用卡欺诈检测的神经数据挖掘

R. Brause, Timm Sebastian Langsdorf, Hans-Michael Hepp
{"title":"信用卡欺诈检测的神经数据挖掘","authors":"R. Brause, Timm Sebastian Langsdorf, Hans-Michael Hepp","doi":"10.1109/TAI.1999.809773","DOIUrl":null,"url":null,"abstract":"The prevention of credit card fraud is an important application for prediction techniques. One major obstacle for using neural network training techniques is the high necessary diagnostic quality: since only one financial transaction in a thousand is invalid no prediction success less than 99.9% is acceptable. Because of these credit card transaction requirements, completely new concepts had to be developed and tested on real credit card data. This paper shows how advanced data mining techniques and a neural network algorithm can be combined successfully to obtain a high fraud coverage combined with a low false alarm rate.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"407","resultStr":"{\"title\":\"Neural data mining for credit card fraud detection\",\"authors\":\"R. Brause, Timm Sebastian Langsdorf, Hans-Michael Hepp\",\"doi\":\"10.1109/TAI.1999.809773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevention of credit card fraud is an important application for prediction techniques. One major obstacle for using neural network training techniques is the high necessary diagnostic quality: since only one financial transaction in a thousand is invalid no prediction success less than 99.9% is acceptable. Because of these credit card transaction requirements, completely new concepts had to be developed and tested on real credit card data. This paper shows how advanced data mining techniques and a neural network algorithm can be combined successfully to obtain a high fraud coverage combined with a low false alarm rate.\",\"PeriodicalId\":194023,\"journal\":{\"name\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"407\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1999.809773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 407

摘要

预防信用卡诈骗是预测技术的一个重要应用。使用神经网络训练技术的一个主要障碍是必要的高诊断质量:由于一千笔金融交易中只有一笔是无效的,因此预测成功率低于99.9%是不可接受的。由于这些信用卡交易需求,必须开发全新的概念,并在真实的信用卡数据上进行测试。本文展示了如何将先进的数据挖掘技术和神经网络算法成功地结合起来,以获得高欺诈覆盖率和低虚警率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural data mining for credit card fraud detection
The prevention of credit card fraud is an important application for prediction techniques. One major obstacle for using neural network training techniques is the high necessary diagnostic quality: since only one financial transaction in a thousand is invalid no prediction success less than 99.9% is acceptable. Because of these credit card transaction requirements, completely new concepts had to be developed and tested on real credit card data. This paper shows how advanced data mining techniques and a neural network algorithm can be combined successfully to obtain a high fraud coverage combined with a low false alarm rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信