旋转不变性纹理检索的双边局部二值模式

Zhang Jiu-wen, Mi Zhou, Runpu Zhang
{"title":"旋转不变性纹理检索的双边局部二值模式","authors":"Zhang Jiu-wen, Mi Zhou, Runpu Zhang","doi":"10.1109/ICISCE.2015.44","DOIUrl":null,"url":null,"abstract":"In this paper, a novel local descriptor, named bilateral local binary patterns (BLBP) is proposed for rotation invariant texture retrieval. The proposed BLBP is based on the Local Binary Pattern operator (LBP) of combining phase and module information of images. For phase information, we use a projecting filter firstly to obtain an analytic signal of the input image and so the obtained image has explicit phase information, then the LBP operator is applied on it in order to achieve a histogram of phase to describe the local pattern of phase. For module information, we use LBP operator directly, then we can achieve a histogram of module to describe the local pattern of pixel variation. We introduce a linear relation between the two histograms to achieve a new histogram as the feature vector of texture image. Experimental results obtained from two databases demonstrate that the proposed BLBP can achieve higher retrieval rate than only using LBP for original images while the computational complexity is lower than using the phase information with LBP in the complex wavelet domain for rotation invariant image retrieval.","PeriodicalId":356250,"journal":{"name":"2015 2nd International Conference on Information Science and Control Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilateral Local Binary Patterns for Rotation Invariant Texture Retrieval\",\"authors\":\"Zhang Jiu-wen, Mi Zhou, Runpu Zhang\",\"doi\":\"10.1109/ICISCE.2015.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel local descriptor, named bilateral local binary patterns (BLBP) is proposed for rotation invariant texture retrieval. The proposed BLBP is based on the Local Binary Pattern operator (LBP) of combining phase and module information of images. For phase information, we use a projecting filter firstly to obtain an analytic signal of the input image and so the obtained image has explicit phase information, then the LBP operator is applied on it in order to achieve a histogram of phase to describe the local pattern of phase. For module information, we use LBP operator directly, then we can achieve a histogram of module to describe the local pattern of pixel variation. We introduce a linear relation between the two histograms to achieve a new histogram as the feature vector of texture image. Experimental results obtained from two databases demonstrate that the proposed BLBP can achieve higher retrieval rate than only using LBP for original images while the computational complexity is lower than using the phase information with LBP in the complex wavelet domain for rotation invariant image retrieval.\",\"PeriodicalId\":356250,\"journal\":{\"name\":\"2015 2nd International Conference on Information Science and Control Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Information Science and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCE.2015.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Information Science and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2015.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的局部描述符——双边局部二进制模式(BLBP),用于旋转不变性纹理检索。该算法基于结合图像相位和模块信息的局部二值模式算子(LBP)。对于相位信息,首先对输入图像进行投影滤波,得到解析信号,得到明确的相位信息,然后对其进行LBP算子处理,得到相位直方图,描述相位的局部规律。对于模块信息,我们直接使用LBP算子,然后得到模块的直方图来描述像素的局部变化模式。我们在两个直方图之间引入线性关系,得到一个新的直方图作为纹理图像的特征向量。两个数据库的实验结果表明,该方法比单纯使用LBP对原始图像进行旋转不变检索具有更高的检索率,且计算复杂度低于在复小波域使用LBP的相位信息进行旋转不变图像检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bilateral Local Binary Patterns for Rotation Invariant Texture Retrieval
In this paper, a novel local descriptor, named bilateral local binary patterns (BLBP) is proposed for rotation invariant texture retrieval. The proposed BLBP is based on the Local Binary Pattern operator (LBP) of combining phase and module information of images. For phase information, we use a projecting filter firstly to obtain an analytic signal of the input image and so the obtained image has explicit phase information, then the LBP operator is applied on it in order to achieve a histogram of phase to describe the local pattern of phase. For module information, we use LBP operator directly, then we can achieve a histogram of module to describe the local pattern of pixel variation. We introduce a linear relation between the two histograms to achieve a new histogram as the feature vector of texture image. Experimental results obtained from two databases demonstrate that the proposed BLBP can achieve higher retrieval rate than only using LBP for original images while the computational complexity is lower than using the phase information with LBP in the complex wavelet domain for rotation invariant image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信