一种用于胶囊内窥镜的改进的H.264帧内视频编码器

Lan-Rong Dung, Yin-Yi Wu, Hsin-Cheng Lai, P. Weng
{"title":"一种用于胶囊内窥镜的改进的H.264帧内视频编码器","authors":"Lan-Rong Dung, Yin-Yi Wu, Hsin-Cheng Lai, P. Weng","doi":"10.1109/BIOCAS.2008.4696874","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to develop an ultra-low-power video compression processor for capsule endoscope to lower the RF transmitter bandwidth. In applications of capsule endoscope, it is imperative to consider battery life and performance trade-offs. Applying state-of-the-art video compression techniques may significantly reduce the image bit rate by their high compression ratio, but they all require intensive computation and consume much power from battery. There are also many fast video compression algorithms for reducing computation load; however, they may result in distortion of original image. A new video compression algorithm for gastrointestinal image based on H.264 Intra-frame encoder and its corresponding VLSI architecture are both proposed for low-power, high bite-rate wireless capsule endoscope. The algorithm exploits the characteristic of gastrointestinal image and H.264 intra-frame prediction technique to reduce computing complexity and save battery power consumption. As the result of implementation, the developed video compressor for 512-by-512 image sensor and 2 Mbits/sec RF transmitter costs 60 k gates and consumes 0.9161 mW power at 2 frames/sec while the average compression rate can be as low as 82%.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"A modified H.264 intra-frame video encoder for capsule endoscope\",\"authors\":\"Lan-Rong Dung, Yin-Yi Wu, Hsin-Cheng Lai, P. Weng\",\"doi\":\"10.1109/BIOCAS.2008.4696874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to develop an ultra-low-power video compression processor for capsule endoscope to lower the RF transmitter bandwidth. In applications of capsule endoscope, it is imperative to consider battery life and performance trade-offs. Applying state-of-the-art video compression techniques may significantly reduce the image bit rate by their high compression ratio, but they all require intensive computation and consume much power from battery. There are also many fast video compression algorithms for reducing computation load; however, they may result in distortion of original image. A new video compression algorithm for gastrointestinal image based on H.264 Intra-frame encoder and its corresponding VLSI architecture are both proposed for low-power, high bite-rate wireless capsule endoscope. The algorithm exploits the characteristic of gastrointestinal image and H.264 intra-frame prediction technique to reduce computing complexity and save battery power consumption. As the result of implementation, the developed video compressor for 512-by-512 image sensor and 2 Mbits/sec RF transmitter costs 60 k gates and consumes 0.9161 mW power at 2 frames/sec while the average compression rate can be as low as 82%.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本文的目标是开发一种用于胶囊内窥镜的超低功耗视频压缩处理器,以降低射频发射器的带宽。在胶囊内窥镜的应用中,必须考虑电池寿命和性能的权衡。应用最先进的视频压缩技术可以通过其高压缩比显著降低图像比特率,但它们都需要大量的计算和消耗大量的电池电量。为了减少计算量,也有许多快速的视频压缩算法;然而,它们可能会导致原始图像的失真。针对低功耗、高码率的无线胶囊内窥镜,提出了一种基于H.264帧内编码器的胃肠图像视频压缩算法及其相应的VLSI架构。该算法利用胃肠图像的特点,结合H.264帧内预测技术,降低了计算复杂度,节约了电池功耗。实现结果表明,所开发的用于512 × 512图像传感器和2mbits /sec射频发射机的视频压缩器成本为60k门,2帧/秒时功耗为0.9161 mW,平均压缩率可低至82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified H.264 intra-frame video encoder for capsule endoscope
The objective of this paper is to develop an ultra-low-power video compression processor for capsule endoscope to lower the RF transmitter bandwidth. In applications of capsule endoscope, it is imperative to consider battery life and performance trade-offs. Applying state-of-the-art video compression techniques may significantly reduce the image bit rate by their high compression ratio, but they all require intensive computation and consume much power from battery. There are also many fast video compression algorithms for reducing computation load; however, they may result in distortion of original image. A new video compression algorithm for gastrointestinal image based on H.264 Intra-frame encoder and its corresponding VLSI architecture are both proposed for low-power, high bite-rate wireless capsule endoscope. The algorithm exploits the characteristic of gastrointestinal image and H.264 intra-frame prediction technique to reduce computing complexity and save battery power consumption. As the result of implementation, the developed video compressor for 512-by-512 image sensor and 2 Mbits/sec RF transmitter costs 60 k gates and consumes 0.9161 mW power at 2 frames/sec while the average compression rate can be as low as 82%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信