细分散介质中辐射感应电磁场的模拟

M. Zhukovskiy, V. Egorova
{"title":"细分散介质中辐射感应电磁场的模拟","authors":"M. Zhukovskiy, V. Egorova","doi":"10.20948/mathmontis-2021-52-6","DOIUrl":null,"url":null,"abstract":"Algorithms for supercomputer modeling of the radiation electromagnetic field in heterogeneous materials of a complex finely-dispersed structure are constructed. A geometric model of a heterogeneous medium is created using Stilinger-Lubachevsky algorithms for multimodal structures. The model includes a system of detectors for statistical evaluation of functionals on the space of solutions of the photon-electron cascade transport equations. Algorithms for the three-dimensional approximation of the results of modeling the radiation transport in a fine-dispersed medium to an electrodynamic difference grid are developed. The approximation methods based on the technology of neural networks. The method of numerical solution of the complete system of Maxwell's equations for calculating the electromagnetic field in a fine-dispersed medium is worked out. The results of demonstration calculations of the electromagnetic field are presented. The results of the calculations show that the spatial distribution of the radiation electromagnetic field has a sharply inhomogeneous structure caused by the presence of boundaries of materials with different radiation properties.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of the radiation induced electromagnetic field in finely-disperse media\",\"authors\":\"M. Zhukovskiy, V. Egorova\",\"doi\":\"10.20948/mathmontis-2021-52-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithms for supercomputer modeling of the radiation electromagnetic field in heterogeneous materials of a complex finely-dispersed structure are constructed. A geometric model of a heterogeneous medium is created using Stilinger-Lubachevsky algorithms for multimodal structures. The model includes a system of detectors for statistical evaluation of functionals on the space of solutions of the photon-electron cascade transport equations. Algorithms for the three-dimensional approximation of the results of modeling the radiation transport in a fine-dispersed medium to an electrodynamic difference grid are developed. The approximation methods based on the technology of neural networks. The method of numerical solution of the complete system of Maxwell's equations for calculating the electromagnetic field in a fine-dispersed medium is worked out. The results of demonstration calculations of the electromagnetic field are presented. The results of the calculations show that the spatial distribution of the radiation electromagnetic field has a sharply inhomogeneous structure caused by the presence of boundaries of materials with different radiation properties.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2021-52-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2021-52-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立了具有复杂细分散结构的非均质材料中辐射电磁场的超级计算机建模算法。采用多模态结构的Stilinger-Lubachevsky算法建立了非均质介质的几何模型。该模型包括一个检测器系统,用于统计评估光子-电子级联输运方程解空间上的泛函。提出了将细分散介质中辐射输运模拟结果三维逼近到电动力差分网格的算法。基于神经网络技术的逼近方法。给出了计算细分散介质中电磁场的完整麦克斯韦方程组的数值解的方法。给出了电磁场的演示计算结果。计算结果表明,辐射电磁场的空间分布具有明显的不均匀结构,这是由于具有不同辐射特性的材料边界的存在造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of the radiation induced electromagnetic field in finely-disperse media
Algorithms for supercomputer modeling of the radiation electromagnetic field in heterogeneous materials of a complex finely-dispersed structure are constructed. A geometric model of a heterogeneous medium is created using Stilinger-Lubachevsky algorithms for multimodal structures. The model includes a system of detectors for statistical evaluation of functionals on the space of solutions of the photon-electron cascade transport equations. Algorithms for the three-dimensional approximation of the results of modeling the radiation transport in a fine-dispersed medium to an electrodynamic difference grid are developed. The approximation methods based on the technology of neural networks. The method of numerical solution of the complete system of Maxwell's equations for calculating the electromagnetic field in a fine-dispersed medium is worked out. The results of demonstration calculations of the electromagnetic field are presented. The results of the calculations show that the spatial distribution of the radiation electromagnetic field has a sharply inhomogeneous structure caused by the presence of boundaries of materials with different radiation properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信