{"title":"基于深度感知和行为生成的自主学习","authors":"Sungmoon Jeong, Yunjung Park, Minho Lee","doi":"10.1109/DEVLRN.2013.6652531","DOIUrl":null,"url":null,"abstract":"We propose a new neuro-robotic network that can simultaneously achieve a goal oriented behavior task and perception enhancement task for a visually-guided object manipulation based on learning by examples. The brain exploits action to develop perception qualities, and perceptual process helps to develop qualified-behavior. In order to import those action and perception inter-abilities of a brain into a humanoid robot, we consider two key inspirations: (1) Sensory Invariant Driven Action (SIDA) and (2) Object Size Invariance (OSI) characteristic. Considering robot manipulation of a target object with distance estimation as a perceptual process, we develop a new autonomous learning method based on the SIDA for behavior generation and OSI property for perceptual judgment. The proposed method is evaluated by using a humanoid robot (NAO) with stereo cameras, and the experimental results show that the proposed method is effective on autonomously improving the behavior generation performance as well as depth perception accuracy.","PeriodicalId":106997,"journal":{"name":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous learning based on depth perception and behavior generation\",\"authors\":\"Sungmoon Jeong, Yunjung Park, Minho Lee\",\"doi\":\"10.1109/DEVLRN.2013.6652531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new neuro-robotic network that can simultaneously achieve a goal oriented behavior task and perception enhancement task for a visually-guided object manipulation based on learning by examples. The brain exploits action to develop perception qualities, and perceptual process helps to develop qualified-behavior. In order to import those action and perception inter-abilities of a brain into a humanoid robot, we consider two key inspirations: (1) Sensory Invariant Driven Action (SIDA) and (2) Object Size Invariance (OSI) characteristic. Considering robot manipulation of a target object with distance estimation as a perceptual process, we develop a new autonomous learning method based on the SIDA for behavior generation and OSI property for perceptual judgment. The proposed method is evaluated by using a humanoid robot (NAO) with stereo cameras, and the experimental results show that the proposed method is effective on autonomously improving the behavior generation performance as well as depth perception accuracy.\",\"PeriodicalId\":106997,\"journal\":{\"name\":\"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2013.6652531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2013.6652531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autonomous learning based on depth perception and behavior generation
We propose a new neuro-robotic network that can simultaneously achieve a goal oriented behavior task and perception enhancement task for a visually-guided object manipulation based on learning by examples. The brain exploits action to develop perception qualities, and perceptual process helps to develop qualified-behavior. In order to import those action and perception inter-abilities of a brain into a humanoid robot, we consider two key inspirations: (1) Sensory Invariant Driven Action (SIDA) and (2) Object Size Invariance (OSI) characteristic. Considering robot manipulation of a target object with distance estimation as a perceptual process, we develop a new autonomous learning method based on the SIDA for behavior generation and OSI property for perceptual judgment. The proposed method is evaluated by using a humanoid robot (NAO) with stereo cameras, and the experimental results show that the proposed method is effective on autonomously improving the behavior generation performance as well as depth perception accuracy.