{"title":"$m$点分数边值问题解的存在性","authors":"N. Nyamoradi","doi":"10.0000/IJAMC.2013.5.1.454","DOIUrl":null,"url":null,"abstract":"In this paper, by employing the Leggett-Williams fixed point theorem, we study the existence of three solutions or the following $m$-point fractional boundary value problem \\begin{equation*} \\begin{cases} {}^cD_{0^+}^\\alpha u (t) = f (t, u (t), u' (t)), & t \\in (0, 1),\\\\ u''(0) = 0, \\;\\;\\;u' (0) = \\sum_{i = 1}^{m - 2} a_i u' (\\xi_i), \\;\\;\\; u (1) = \\sum_{i = 1}^{m - 2} b_i u (\\xi_i), \\end{cases} \\end{equation*} where $2 0$ for $1 \\leq i \\leq m - 2$ and $\\sum_{i = 1}^{m - 2} a_i < 1$, $0 < \\sum_{i = 1}^{m - 2} b_i < 1$, $f \\in C ([0, 1] \\times [0, \\infty); [0, \\infty))$.","PeriodicalId":173223,"journal":{"name":"International Journal of Applied Mathematics and Computation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions for $m$-point fractional boundary value problems.\",\"authors\":\"N. Nyamoradi\",\"doi\":\"10.0000/IJAMC.2013.5.1.454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by employing the Leggett-Williams fixed point theorem, we study the existence of three solutions or the following $m$-point fractional boundary value problem \\\\begin{equation*} \\\\begin{cases} {}^cD_{0^+}^\\\\alpha u (t) = f (t, u (t), u' (t)), & t \\\\in (0, 1),\\\\\\\\ u''(0) = 0, \\\\;\\\\;\\\\;u' (0) = \\\\sum_{i = 1}^{m - 2} a_i u' (\\\\xi_i), \\\\;\\\\;\\\\; u (1) = \\\\sum_{i = 1}^{m - 2} b_i u (\\\\xi_i), \\\\end{cases} \\\\end{equation*} where $2 0$ for $1 \\\\leq i \\\\leq m - 2$ and $\\\\sum_{i = 1}^{m - 2} a_i < 1$, $0 < \\\\sum_{i = 1}^{m - 2} b_i < 1$, $f \\\\in C ([0, 1] \\\\times [0, \\\\infty); [0, \\\\infty))$.\",\"PeriodicalId\":173223,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computation\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.0000/IJAMC.2013.5.1.454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.0000/IJAMC.2013.5.1.454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文利用Leggett-Williams不动点定理,研究了以下$m$ -point分数边值问题\begin{equation*} \begin{cases} {}^cD_{0^+}^\alpha u (t) = f (t, u (t), u' (t)), & t \in (0, 1),\\ u''(0) = 0, \;\;\;u' (0) = \sum_{i = 1}^{m - 2} a_i u' (\xi_i), \;\;\; u (1) = \sum_{i = 1}^{m - 2} b_i u (\xi_i), \end{cases} \end{equation*}的三个解的存在性,其中$2 0$为$1 \leq i \leq m - 2$和$\sum_{i = 1}^{m - 2} a_i < 1$, $0 < \sum_{i = 1}^{m - 2} b_i < 1$, $f \in C ([0, 1] \times [0, \infty); [0, \infty))$。
Existence of solutions for $m$-point fractional boundary value problems.
In this paper, by employing the Leggett-Williams fixed point theorem, we study the existence of three solutions or the following $m$-point fractional boundary value problem \begin{equation*} \begin{cases} {}^cD_{0^+}^\alpha u (t) = f (t, u (t), u' (t)), & t \in (0, 1),\\ u''(0) = 0, \;\;\;u' (0) = \sum_{i = 1}^{m - 2} a_i u' (\xi_i), \;\;\; u (1) = \sum_{i = 1}^{m - 2} b_i u (\xi_i), \end{cases} \end{equation*} where $2 0$ for $1 \leq i \leq m - 2$ and $\sum_{i = 1}^{m - 2} a_i < 1$, $0 < \sum_{i = 1}^{m - 2} b_i < 1$, $f \in C ([0, 1] \times [0, \infty); [0, \infty))$.