全球工作空间理论:迈向通用人工智能的一步

Mohamed Abdelwahab, P. Aarabi
{"title":"全球工作空间理论:迈向通用人工智能的一步","authors":"Mohamed Abdelwahab, P. Aarabi","doi":"10.1109/CAI54212.2023.00125","DOIUrl":null,"url":null,"abstract":"Global Workspace Theory (GWT) and Artificial General Intelligence (AGI) are two concepts in cognitive science and Artificial Intelligence, respectively. This paper discusses the possibility of achieving AGI using a deep learning implementation of GWT. The shared latent space for GWT is trained using the latent spaces of the connected deep learning modules. This implementation aims to enhance the performance of specialized models in their specified tasks and achieve more general functions from single-task/specialized modules. The paper also discusses the possible applications of this implementation in healthcare.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Global Workspace Theory: A Step Towards Artificial General Intelligence\",\"authors\":\"Mohamed Abdelwahab, P. Aarabi\",\"doi\":\"10.1109/CAI54212.2023.00125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global Workspace Theory (GWT) and Artificial General Intelligence (AGI) are two concepts in cognitive science and Artificial Intelligence, respectively. This paper discusses the possibility of achieving AGI using a deep learning implementation of GWT. The shared latent space for GWT is trained using the latent spaces of the connected deep learning modules. This implementation aims to enhance the performance of specialized models in their specified tasks and achieve more general functions from single-task/specialized modules. The paper also discusses the possible applications of this implementation in healthcare.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAI54212.2023.00125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全局工作空间理论(GWT)和通用人工智能(AGI)分别是认知科学和人工智能中的两个概念。本文讨论了使用GWT的深度学习实现AGI的可能性。GWT的共享潜在空间使用连接的深度学习模块的潜在空间进行训练。该实现旨在增强专门化模型在其指定任务中的性能,并从单任务/专门化模块中实现更通用的功能。本文还讨论了该实现在医疗保健中的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Global Workspace Theory: A Step Towards Artificial General Intelligence
Global Workspace Theory (GWT) and Artificial General Intelligence (AGI) are two concepts in cognitive science and Artificial Intelligence, respectively. This paper discusses the possibility of achieving AGI using a deep learning implementation of GWT. The shared latent space for GWT is trained using the latent spaces of the connected deep learning modules. This implementation aims to enhance the performance of specialized models in their specified tasks and achieve more general functions from single-task/specialized modules. The paper also discusses the possible applications of this implementation in healthcare.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信