Igor Diankin, D. Kudryavtsev, A. Zalevsky, V. Tsetlin, A. Golovin
{"title":"计算机模拟揭示SLURP蛋白与7烟碱乙酰胆碱受体的新结合模式","authors":"Igor Diankin, D. Kudryavtsev, A. Zalevsky, V. Tsetlin, A. Golovin","doi":"10.14529/JSFI180407","DOIUrl":null,"url":null,"abstract":"SLURP-1 is a member of three-finger toxin-like proteins. Their characteristic feature is a set of three beta strands extruding from hydrophobic core stabilized by disulfide bonds. Each beta-strand carries a flexible loop, which is responsible for recognition. SLURP-1 was recently shown to act as an endogenous growth regulator of keratinocytes and tumor suppressor by reducing cell migration and invasion by antagonizing the pro-malignant effects of nicotine. This effect is achieved through allosteric interaction with alpha7 nicotinic acetylcholine receptors (alpha-7 nAChRs) in an antagonist-like manner. Moreover, this interaction is unaffected by several well-known agents specifically alpha-bungarotoxin. In this work, we carry out the conformational analysis of the SLURP-1 by a microsecond-long full-atom explicit solvent molecular dynamics simulations followed by clustering, to identify representative states. To achieve this timescale we employed a GPU-accelerated version of GROMACS modeling package. To avoid human bias in clustering we used a non-parametric clustering algorithm Affinity Propagation adapted for biomolecules and HPC environments. Then, we applied protein-protein molecular docking of the ten most massive clusters to alpha7-nAChRs in order to test if structural variability can affect binding. Docking simulations revealed the unusual binding mode of one of the minor SLURP-1 conformations.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Binding Mode of SLURP Protein to a7 Nicotinic Acetylcholine Receptor Revealed by Computer Simulations\",\"authors\":\"Igor Diankin, D. Kudryavtsev, A. Zalevsky, V. Tsetlin, A. Golovin\",\"doi\":\"10.14529/JSFI180407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SLURP-1 is a member of three-finger toxin-like proteins. Their characteristic feature is a set of three beta strands extruding from hydrophobic core stabilized by disulfide bonds. Each beta-strand carries a flexible loop, which is responsible for recognition. SLURP-1 was recently shown to act as an endogenous growth regulator of keratinocytes and tumor suppressor by reducing cell migration and invasion by antagonizing the pro-malignant effects of nicotine. This effect is achieved through allosteric interaction with alpha7 nicotinic acetylcholine receptors (alpha-7 nAChRs) in an antagonist-like manner. Moreover, this interaction is unaffected by several well-known agents specifically alpha-bungarotoxin. In this work, we carry out the conformational analysis of the SLURP-1 by a microsecond-long full-atom explicit solvent molecular dynamics simulations followed by clustering, to identify representative states. To achieve this timescale we employed a GPU-accelerated version of GROMACS modeling package. To avoid human bias in clustering we used a non-parametric clustering algorithm Affinity Propagation adapted for biomolecules and HPC environments. Then, we applied protein-protein molecular docking of the ten most massive clusters to alpha7-nAChRs in order to test if structural variability can affect binding. Docking simulations revealed the unusual binding mode of one of the minor SLURP-1 conformations.\",\"PeriodicalId\":338883,\"journal\":{\"name\":\"Supercomput. Front. Innov.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supercomput. Front. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/JSFI180407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/JSFI180407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Binding Mode of SLURP Protein to a7 Nicotinic Acetylcholine Receptor Revealed by Computer Simulations
SLURP-1 is a member of three-finger toxin-like proteins. Their characteristic feature is a set of three beta strands extruding from hydrophobic core stabilized by disulfide bonds. Each beta-strand carries a flexible loop, which is responsible for recognition. SLURP-1 was recently shown to act as an endogenous growth regulator of keratinocytes and tumor suppressor by reducing cell migration and invasion by antagonizing the pro-malignant effects of nicotine. This effect is achieved through allosteric interaction with alpha7 nicotinic acetylcholine receptors (alpha-7 nAChRs) in an antagonist-like manner. Moreover, this interaction is unaffected by several well-known agents specifically alpha-bungarotoxin. In this work, we carry out the conformational analysis of the SLURP-1 by a microsecond-long full-atom explicit solvent molecular dynamics simulations followed by clustering, to identify representative states. To achieve this timescale we employed a GPU-accelerated version of GROMACS modeling package. To avoid human bias in clustering we used a non-parametric clustering algorithm Affinity Propagation adapted for biomolecules and HPC environments. Then, we applied protein-protein molecular docking of the ten most massive clusters to alpha7-nAChRs in order to test if structural variability can affect binding. Docking simulations revealed the unusual binding mode of one of the minor SLURP-1 conformations.