ST-MLR:一种提高无线传感器网络数据可靠性的时空多元线性回归缺失数据重建方法

Yemeni Zaid, Bo Zhang, Waleed M. Ismael, Yingjuan Xie, G. Surname, Haibin Wang
{"title":"ST-MLR:一种提高无线传感器网络数据可靠性的时空多元线性回归缺失数据重建方法","authors":"Yemeni Zaid, Bo Zhang, Waleed M. Ismael, Yingjuan Xie, G. Surname, Haibin Wang","doi":"10.1109/ICOTEN52080.2021.9493512","DOIUrl":null,"url":null,"abstract":"Missing data is one of the unavoidable issues in Wireless Sensor Networks (WSNs) due to various reasons, including communication failure, unreliable communication links, unexpected damage, etc. WSNs are the base of many critical and non-critical applications, such as nuclear applications, medical applications, weather forecasting, etc. Therefore missing data reconstruction before their application or further analysis plays a vital role in data reliability. This paper proposed a missing data reconstruction approach based on the Multiple Linear Regression model (MLR) using Spatio-temporal correlation. The experimental results reveal that the proposed approach is effective and efficient in reconstructing missing data of different scales.","PeriodicalId":308802,"journal":{"name":"2021 International Congress of Advanced Technology and Engineering (ICOTEN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ST-MLR: A Spatio-temporal Multiple Linear Regression Missing Data Reconstruction Approach for Improving WSN Data Reliability\",\"authors\":\"Yemeni Zaid, Bo Zhang, Waleed M. Ismael, Yingjuan Xie, G. Surname, Haibin Wang\",\"doi\":\"10.1109/ICOTEN52080.2021.9493512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missing data is one of the unavoidable issues in Wireless Sensor Networks (WSNs) due to various reasons, including communication failure, unreliable communication links, unexpected damage, etc. WSNs are the base of many critical and non-critical applications, such as nuclear applications, medical applications, weather forecasting, etc. Therefore missing data reconstruction before their application or further analysis plays a vital role in data reliability. This paper proposed a missing data reconstruction approach based on the Multiple Linear Regression model (MLR) using Spatio-temporal correlation. The experimental results reveal that the proposed approach is effective and efficient in reconstructing missing data of different scales.\",\"PeriodicalId\":308802,\"journal\":{\"name\":\"2021 International Congress of Advanced Technology and Engineering (ICOTEN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Congress of Advanced Technology and Engineering (ICOTEN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOTEN52080.2021.9493512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Congress of Advanced Technology and Engineering (ICOTEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOTEN52080.2021.9493512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于各种原因,包括通信故障、通信链路不可靠、意外损坏等,数据丢失是无线传感器网络中不可避免的问题之一。无线传感器网络是许多关键和非关键应用的基础,如核应用、医疗应用、天气预报等。因此,缺失数据在应用或进一步分析前的重构对数据的可靠性起着至关重要的作用。提出了一种基于时空相关性的多元线性回归模型(MLR)缺失数据重建方法。实验结果表明,该方法能够有效地重建不同尺度的缺失数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ST-MLR: A Spatio-temporal Multiple Linear Regression Missing Data Reconstruction Approach for Improving WSN Data Reliability
Missing data is one of the unavoidable issues in Wireless Sensor Networks (WSNs) due to various reasons, including communication failure, unreliable communication links, unexpected damage, etc. WSNs are the base of many critical and non-critical applications, such as nuclear applications, medical applications, weather forecasting, etc. Therefore missing data reconstruction before their application or further analysis plays a vital role in data reliability. This paper proposed a missing data reconstruction approach based on the Multiple Linear Regression model (MLR) using Spatio-temporal correlation. The experimental results reveal that the proposed approach is effective and efficient in reconstructing missing data of different scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信