Vincent van der Leest, G. Schrijen, H. Handschuh, P. Tuyls
{"title":"从D触发器的硬件固有安全性","authors":"Vincent van der Leest, G. Schrijen, H. Handschuh, P. Tuyls","doi":"10.1145/1867635.1867644","DOIUrl":null,"url":null,"abstract":"In this paper we describe the results of our investigations Supported by EU FP7 project UNIQUE on the randomness and reliability of D flip-flops when used as a Physically Unclonable Function (PUF). These D flip-flops are hardware components which present a random start-up value when powered up. We show that against all odds, enough randomness exists in such elements when implemented on an Application-Specific Integrated Circuit (ASIC) to turn the responses of a number of D flip-flops into a secret random sequence allowing to derive keys for use in conjunction with cryptographic algorithms. In addition to being unpredictable, these flip-flops have the advantage that they can be spread over random locations in an ASIC. This makes them very difficult to reverse-engineer when used to hide a secret key in a design at a relatively small cost in resources.","PeriodicalId":401412,"journal":{"name":"Scalable Trusted Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Hardware intrinsic security from D flip-flops\",\"authors\":\"Vincent van der Leest, G. Schrijen, H. Handschuh, P. Tuyls\",\"doi\":\"10.1145/1867635.1867644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe the results of our investigations Supported by EU FP7 project UNIQUE on the randomness and reliability of D flip-flops when used as a Physically Unclonable Function (PUF). These D flip-flops are hardware components which present a random start-up value when powered up. We show that against all odds, enough randomness exists in such elements when implemented on an Application-Specific Integrated Circuit (ASIC) to turn the responses of a number of D flip-flops into a secret random sequence allowing to derive keys for use in conjunction with cryptographic algorithms. In addition to being unpredictable, these flip-flops have the advantage that they can be spread over random locations in an ASIC. This makes them very difficult to reverse-engineer when used to hide a secret key in a design at a relatively small cost in resources.\",\"PeriodicalId\":401412,\"journal\":{\"name\":\"Scalable Trusted Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scalable Trusted Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1867635.1867644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Trusted Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1867635.1867644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we describe the results of our investigations Supported by EU FP7 project UNIQUE on the randomness and reliability of D flip-flops when used as a Physically Unclonable Function (PUF). These D flip-flops are hardware components which present a random start-up value when powered up. We show that against all odds, enough randomness exists in such elements when implemented on an Application-Specific Integrated Circuit (ASIC) to turn the responses of a number of D flip-flops into a secret random sequence allowing to derive keys for use in conjunction with cryptographic algorithms. In addition to being unpredictable, these flip-flops have the advantage that they can be spread over random locations in an ASIC. This makes them very difficult to reverse-engineer when used to hide a secret key in a design at a relatively small cost in resources.