粘性消失极限下梯度流动的均匀可观测性

C. Laurent, Matthieu L'eautaud
{"title":"粘性消失极限下梯度流动的均匀可观测性","authors":"C. Laurent, Matthieu L'eautaud","doi":"10.5802/JEP.151","DOIUrl":null,"url":null,"abstract":"We consider a transport equation by a gradient vector field with a small viscous perturbation $-\\epsilon\\Delta_g$. We study uniform observability (resp. controllability) properties in the (singular) vanishing viscosity limit $\\epsilon\\to 0^+$ , that is, the possibility of having a uniformly bounded observation constant (resp. control cost). We prove with a series of examples that in general, the minimal time for uniform observability may be much larger than the minimal time needed for the observability of the limit equation $\\epsilon = 0$. We also prove that the two minimal times coincides for positive solutions. The proofs rely on a semiclassical reformulation of the problem together with (a) Agmon estimates concerning decay of eigenfunctions in the classically forbidden region [HS84] (b) fine estimates of the kernel of the semiclassical heat equation [LY86].","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On uniform observability of gradient flows in the vanishing viscosity limit\",\"authors\":\"C. Laurent, Matthieu L'eautaud\",\"doi\":\"10.5802/JEP.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a transport equation by a gradient vector field with a small viscous perturbation $-\\\\epsilon\\\\Delta_g$. We study uniform observability (resp. controllability) properties in the (singular) vanishing viscosity limit $\\\\epsilon\\\\to 0^+$ , that is, the possibility of having a uniformly bounded observation constant (resp. control cost). We prove with a series of examples that in general, the minimal time for uniform observability may be much larger than the minimal time needed for the observability of the limit equation $\\\\epsilon = 0$. We also prove that the two minimal times coincides for positive solutions. The proofs rely on a semiclassical reformulation of the problem together with (a) Agmon estimates concerning decay of eigenfunctions in the classically forbidden region [HS84] (b) fine estimates of the kernel of the semiclassical heat equation [LY86].\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/JEP.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑一个带有小粘性扰动$-\epsilon\Delta_g$的梯度矢量场的输运方程。我们研究均匀可观测性。(奇异)消失粘度极限$\epsilon\to 0^+$中的可控性(Controllability)性质,即具有均匀有界观测常数(resp。控制成本)。我们用一系列的例子证明,一般情况下,均匀可观察性的最小时间可能比极限方程$\epsilon = 0$的可观察性所需的最小时间大得多。我们还证明了两个最小时间对正解重合。这些证明依赖于问题的半经典重新表述以及(a)关于经典禁区内特征函数衰减的Agmon估计[HS84] (b)半经典热方程核的精细估计[LY86]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On uniform observability of gradient flows in the vanishing viscosity limit
We consider a transport equation by a gradient vector field with a small viscous perturbation $-\epsilon\Delta_g$. We study uniform observability (resp. controllability) properties in the (singular) vanishing viscosity limit $\epsilon\to 0^+$ , that is, the possibility of having a uniformly bounded observation constant (resp. control cost). We prove with a series of examples that in general, the minimal time for uniform observability may be much larger than the minimal time needed for the observability of the limit equation $\epsilon = 0$. We also prove that the two minimal times coincides for positive solutions. The proofs rely on a semiclassical reformulation of the problem together with (a) Agmon estimates concerning decay of eigenfunctions in the classically forbidden region [HS84] (b) fine estimates of the kernel of the semiclassical heat equation [LY86].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信