基于点云数据的机器人抓取目标姿态估计

Xingfang Wu, Weiming Qu, T. Zhang, D. Luo
{"title":"基于点云数据的机器人抓取目标姿态估计","authors":"Xingfang Wu, Weiming Qu, T. Zhang, D. Luo","doi":"10.1109/ICMA54519.2022.9856092","DOIUrl":null,"url":null,"abstract":"Object pose estimation refers to the estimation of objects’ position and orientation relative to the camera coordinate system using visual information. It is fundamental to grasp point selection and motion planning in robot grasping. Different from other works using depth vision sensors, this work discusses the approach of estimating objects’ pose specially with unilateral and unordered point clouds of single objects in robot grasping. In this paper, we propose to directly consume point clouds to estimate objects’ 3D position and 3D orientations relative to predefined canonical posture, which utilizes the PointCNN [1]. A dataset is also collected specifically for this task, on which we train our models and validate the effectiveness of our proposed method. Code, dataset and pre-trained models are available at https://github.com/shrcrobot/Pose-Estimation","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Object Pose Estimation with Point Cloud Data for Robot Grasping\",\"authors\":\"Xingfang Wu, Weiming Qu, T. Zhang, D. Luo\",\"doi\":\"10.1109/ICMA54519.2022.9856092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object pose estimation refers to the estimation of objects’ position and orientation relative to the camera coordinate system using visual information. It is fundamental to grasp point selection and motion planning in robot grasping. Different from other works using depth vision sensors, this work discusses the approach of estimating objects’ pose specially with unilateral and unordered point clouds of single objects in robot grasping. In this paper, we propose to directly consume point clouds to estimate objects’ 3D position and 3D orientations relative to predefined canonical posture, which utilizes the PointCNN [1]. A dataset is also collected specifically for this task, on which we train our models and validate the effectiveness of our proposed method. Code, dataset and pre-trained models are available at https://github.com/shrcrobot/Pose-Estimation\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9856092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

物体姿态估计是指利用视觉信息估计物体相对于摄像机坐标系的位置和方向。抓取点的选择和运动规划是机器人抓取的基础。与其他使用深度视觉传感器的研究不同,本文特别讨论了机器人抓取中单个物体的单边和无序点云的姿态估计方法。在本文中,我们提出直接消耗点云来估计物体相对于预定义的规范姿态的三维位置和三维方向,这利用了PointCNN[1]。我们还专门为这个任务收集了一个数据集,在这个数据集上我们训练了我们的模型并验证了我们提出的方法的有效性。代码、数据集和预训练模型可在https://github.com/shrcrobot/Pose-Estimation上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Pose Estimation with Point Cloud Data for Robot Grasping
Object pose estimation refers to the estimation of objects’ position and orientation relative to the camera coordinate system using visual information. It is fundamental to grasp point selection and motion planning in robot grasping. Different from other works using depth vision sensors, this work discusses the approach of estimating objects’ pose specially with unilateral and unordered point clouds of single objects in robot grasping. In this paper, we propose to directly consume point clouds to estimate objects’ 3D position and 3D orientations relative to predefined canonical posture, which utilizes the PointCNN [1]. A dataset is also collected specifically for this task, on which we train our models and validate the effectiveness of our proposed method. Code, dataset and pre-trained models are available at https://github.com/shrcrobot/Pose-Estimation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信