模糊脉冲噪声检测器的有效图像恢复

S. Meher, Punyaban Patel
{"title":"模糊脉冲噪声检测器的有效图像恢复","authors":"S. Meher, Punyaban Patel","doi":"10.1109/RAICS.2011.6069401","DOIUrl":null,"url":null,"abstract":"The present article proposes an efficient restoration model for images corrupted with impulse noise of varying values that follow a random distribution over some dynamic range. The model extracts a set of informative features, uses a fuzzy detector based on product aggregation reasoning rule for noisy pixels detection and noise removal operator for filtration. The fuzzy set-based detector provides a better learning and generalization capability for improved detection. The model thus explores mutually the advantages of both fuzzy detector and noise removal operator. Superiority of the proposed model to other similar methods is established both visually and quantitatively in removing impulse noise from highly corrupted images. With experimental results, it is found that the proposed model performs better and at the same time takes less computational time than others.","PeriodicalId":394515,"journal":{"name":"2011 IEEE Recent Advances in Intelligent Computational Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fuzzy impulse noise detector for efficient image restoration\",\"authors\":\"S. Meher, Punyaban Patel\",\"doi\":\"10.1109/RAICS.2011.6069401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present article proposes an efficient restoration model for images corrupted with impulse noise of varying values that follow a random distribution over some dynamic range. The model extracts a set of informative features, uses a fuzzy detector based on product aggregation reasoning rule for noisy pixels detection and noise removal operator for filtration. The fuzzy set-based detector provides a better learning and generalization capability for improved detection. The model thus explores mutually the advantages of both fuzzy detector and noise removal operator. Superiority of the proposed model to other similar methods is established both visually and quantitatively in removing impulse noise from highly corrupted images. With experimental results, it is found that the proposed model performs better and at the same time takes less computational time than others.\",\"PeriodicalId\":394515,\"journal\":{\"name\":\"2011 IEEE Recent Advances in Intelligent Computational Systems\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Recent Advances in Intelligent Computational Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAICS.2011.6069401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Recent Advances in Intelligent Computational Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2011.6069401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种有效的图像恢复模型,用于在一定动态范围内遵循随机分布的变化值脉冲噪声损坏的图像。该模型提取一组信息特征,使用基于产品聚集推理规则的模糊检测器进行噪声像素检测,并使用去噪算子进行过滤。基于模糊集的检测器为改进检测提供了更好的学习和泛化能力。因此,该模型相互探索了模糊检测器和去噪算子的优点。在从高度损坏的图像中去除脉冲噪声方面,所提出的模型在视觉上和定量上都优于其他类似方法。实验结果表明,该模型具有较好的性能,且计算时间较其他模型少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy impulse noise detector for efficient image restoration
The present article proposes an efficient restoration model for images corrupted with impulse noise of varying values that follow a random distribution over some dynamic range. The model extracts a set of informative features, uses a fuzzy detector based on product aggregation reasoning rule for noisy pixels detection and noise removal operator for filtration. The fuzzy set-based detector provides a better learning and generalization capability for improved detection. The model thus explores mutually the advantages of both fuzzy detector and noise removal operator. Superiority of the proposed model to other similar methods is established both visually and quantitatively in removing impulse noise from highly corrupted images. With experimental results, it is found that the proposed model performs better and at the same time takes less computational time than others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信