基于Kohonen神经网络分类器的电力系统静态安全评估

D. Niebur, A. Germond
{"title":"基于Kohonen神经网络分类器的电力系统静态安全评估","authors":"D. Niebur, A. Germond","doi":"10.1109/PICA.1991.160588","DOIUrl":null,"url":null,"abstract":"The operating point of a power system can be defined as a vector whose components are active and reactive power measurements. If the security criterion is prevention of line overloads, the boundaries of the secure domain of the state space are given by the maximal admissible currents of the transmission lines. The application of an artificial neural network, Kohonen's self-organizing feature map, for the classification of power system states is presented. This classifier maps vectors of an N-dimensional space to a 2-dimensional neural net in a nonlinear way, preserving the topological order of the input vectors. Therefore, secure operating points, that is, vectors inside the boundaries of the secure domain, are mapped to a different region of the neural map than insecure operating points. These mappings are studied using a nonlinear power system model. Choice of security criteria and state space are discussed.<<ETX>>","PeriodicalId":287152,"journal":{"name":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"Power system static security assessment using the Kohonen neural network classifier\",\"authors\":\"D. Niebur, A. Germond\",\"doi\":\"10.1109/PICA.1991.160588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operating point of a power system can be defined as a vector whose components are active and reactive power measurements. If the security criterion is prevention of line overloads, the boundaries of the secure domain of the state space are given by the maximal admissible currents of the transmission lines. The application of an artificial neural network, Kohonen's self-organizing feature map, for the classification of power system states is presented. This classifier maps vectors of an N-dimensional space to a 2-dimensional neural net in a nonlinear way, preserving the topological order of the input vectors. Therefore, secure operating points, that is, vectors inside the boundaries of the secure domain, are mapped to a different region of the neural map than insecure operating points. These mappings are studied using a nonlinear power system model. Choice of security criteria and state space are discussed.<<ETX>>\",\"PeriodicalId\":287152,\"journal\":{\"name\":\"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICA.1991.160588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1991.160588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

摘要

电力系统的工作点可以定义为一个矢量,它的分量是有功功率和无功功率的测量值。如果以防止线路过载为安全准则,则状态空间安全域的边界由输电线路的最大允许电流给出。介绍了人工神经网络Kohonen自组织特征映射在电力系统状态分类中的应用。该分类器以非线性方式将n维空间的向量映射到2维神经网络,同时保持输入向量的拓扑顺序。因此,安全工作点,即在安全域边界内的向量,被映射到与不安全工作点不同的神经图区域。利用非线性电力系统模型对这些映射进行了研究。讨论了安全准则和状态空间的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power system static security assessment using the Kohonen neural network classifier
The operating point of a power system can be defined as a vector whose components are active and reactive power measurements. If the security criterion is prevention of line overloads, the boundaries of the secure domain of the state space are given by the maximal admissible currents of the transmission lines. The application of an artificial neural network, Kohonen's self-organizing feature map, for the classification of power system states is presented. This classifier maps vectors of an N-dimensional space to a 2-dimensional neural net in a nonlinear way, preserving the topological order of the input vectors. Therefore, secure operating points, that is, vectors inside the boundaries of the secure domain, are mapped to a different region of the neural map than insecure operating points. These mappings are studied using a nonlinear power system model. Choice of security criteria and state space are discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信