固定匹配数单环图的无符号拉普拉斯谱半径

Jing-Ming Zhang, Ting Huang, Ji-Ming Guo
{"title":"固定匹配数单环图的无符号拉普拉斯谱半径","authors":"Jing-Ming Zhang, Ting Huang, Ji-Ming Guo","doi":"10.2298/PIM140921001Z","DOIUrl":null,"url":null,"abstract":"We determine the graph with the largest signless Laplacian spec- tral radius among all unicyclic graphs with fixed matching number. respectively. The largest eigenvalues of A(G) and Q(G) are called the spectral radius and the signless Laplacian spectral radius of G, denoted by �(G) and q(G), respectively. When G is connected, A(G) and Q(G) are nonegative irreducible matrix. By the Perron-Frobenius theory, �(G) is simple and has a unique positive unit eigenvector, so does q(G). We refer to such the eigenvector corresponding to q(G) as the Perron vector of G. Two distinct edges in a graph G are independent if they are not adjacent in G. A set of pairwise independent edges of G is called a matching in G. A matching of","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ON THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF UNICYCLIC GRAPHS WITH FIXED MATCHING NUMBER\",\"authors\":\"Jing-Ming Zhang, Ting Huang, Ji-Ming Guo\",\"doi\":\"10.2298/PIM140921001Z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the graph with the largest signless Laplacian spec- tral radius among all unicyclic graphs with fixed matching number. respectively. The largest eigenvalues of A(G) and Q(G) are called the spectral radius and the signless Laplacian spectral radius of G, denoted by �(G) and q(G), respectively. When G is connected, A(G) and Q(G) are nonegative irreducible matrix. By the Perron-Frobenius theory, �(G) is simple and has a unique positive unit eigenvector, so does q(G). We refer to such the eigenvector corresponding to q(G) as the Perron vector of G. Two distinct edges in a graph G are independent if they are not adjacent in G. A set of pairwise independent edges of G is called a matching in G. A matching of\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM140921001Z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM140921001Z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在所有匹配数固定的单环图中,确定无符号拉普拉斯谱半径最大的图。分别。A(G)和Q(G)的最大特征值分别称为G的谱半径和无符号拉普拉斯谱半径,分别用�(G)和Q(G)表示。当G连通时,A(G)和Q(G)为非负不可约矩阵。根据Perron-Frobenius理论,(G)是简单的,并且具有唯一的正单位特征向量,q(G)也是如此。我们把与q(G)相对应的特征向量称为G的Perron向量。如果图G中的两条不同的边在G中不相邻,则它们是独立的。G的一对独立边的集合称为G中的匹配
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF UNICYCLIC GRAPHS WITH FIXED MATCHING NUMBER
We determine the graph with the largest signless Laplacian spec- tral radius among all unicyclic graphs with fixed matching number. respectively. The largest eigenvalues of A(G) and Q(G) are called the spectral radius and the signless Laplacian spectral radius of G, denoted by �(G) and q(G), respectively. When G is connected, A(G) and Q(G) are nonegative irreducible matrix. By the Perron-Frobenius theory, �(G) is simple and has a unique positive unit eigenvector, so does q(G). We refer to such the eigenvector corresponding to q(G) as the Perron vector of G. Two distinct edges in a graph G are independent if they are not adjacent in G. A set of pairwise independent edges of G is called a matching in G. A matching of
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信