$[D]^k\到{}Z^ D $中无序数据向量的线性方程

Piotr Hofman, Jakub R'o.zycki
{"title":"$[D]^k\\到{}Z^ D $中无序数据向量的线性方程","authors":"Piotr Hofman, Jakub R'o.zycki","doi":"10.46298/lmcs-18(4:11)2022","DOIUrl":null,"url":null,"abstract":"Following a recently considered generalisation of linear equations to\nunordered-data vectors and to ordered-data vectors, we perform a further\ngeneralisation to data vectors that are functions from k-element subsets of the\nunordered-data set to vectors of integer numbers. These generalised equations\nnaturally appear in the analysis of vector addition systems (or Petri nets)\nextended so that each token carries a set of unordered data. We show that\nnonnegative-integer solvability of linear equations is in nondeterministic\nexponential time while integer solvability is in polynomial time.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear equations for unordered data vectors in $[D]^k\\\\to{}Z^d$\",\"authors\":\"Piotr Hofman, Jakub R'o.zycki\",\"doi\":\"10.46298/lmcs-18(4:11)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following a recently considered generalisation of linear equations to\\nunordered-data vectors and to ordered-data vectors, we perform a further\\ngeneralisation to data vectors that are functions from k-element subsets of the\\nunordered-data set to vectors of integer numbers. These generalised equations\\nnaturally appear in the analysis of vector addition systems (or Petri nets)\\nextended so that each token carries a set of unordered data. We show that\\nnonnegative-integer solvability of linear equations is in nondeterministic\\nexponential time while integer solvability is in polynomial time.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(4:11)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(4:11)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在最近考虑将线性方程推广到无序数据向量和有序数据向量之后,我们进一步推广到数据向量,这些数据向量是从无序数据集的k元素子集到整数向量的函数。这些广义方程自然地出现在向量加法系统(或Petri网)的分析中,扩展到每个令牌携带一组无序数据。证明了线性方程的非负整数可解性在不确定指数时间内存在,而整数可解性在多项式时间内存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear equations for unordered data vectors in $[D]^k\to{}Z^d$
Following a recently considered generalisation of linear equations to unordered-data vectors and to ordered-data vectors, we perform a further generalisation to data vectors that are functions from k-element subsets of the unordered-data set to vectors of integer numbers. These generalised equations naturally appear in the analysis of vector addition systems (or Petri nets) extended so that each token carries a set of unordered data. We show that nonnegative-integer solvability of linear equations is in nondeterministic exponential time while integer solvability is in polynomial time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信