基于嵌入式传感器的计算机视觉交通流量监测

M. Magrini, D. Moroni, G. Palazzese, G. Pieri, G. Leone, O. Salvetti
{"title":"基于嵌入式传感器的计算机视觉交通流量监测","authors":"M. Magrini, D. Moroni, G. Palazzese, G. Pieri, G. Leone, O. Salvetti","doi":"10.1109/ITSC.2015.35","DOIUrl":null,"url":null,"abstract":"Capillary monitoring of traffic in urban environment is key to a more sustainable mobility in smart cities. In this context, the use of low cost technologies is mandatory to avoid scalability issues that would prevent the adoption of monitoring solutions at the full city scale. In this paper, we introduce a low power and low cost sensor equipped with embedded vision logics that can be used for building Smart Camera Networks (SCN) for applications in Intelligent Transportation System (ITS), in particular, we describe an ad hoc computer vision algorithm for estimation of traffic flow and discuss the findings obtained through an actual field test.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Computer Vision on Embedded Sensors for Traffic Flow Monitoring\",\"authors\":\"M. Magrini, D. Moroni, G. Palazzese, G. Pieri, G. Leone, O. Salvetti\",\"doi\":\"10.1109/ITSC.2015.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capillary monitoring of traffic in urban environment is key to a more sustainable mobility in smart cities. In this context, the use of low cost technologies is mandatory to avoid scalability issues that would prevent the adoption of monitoring solutions at the full city scale. In this paper, we introduce a low power and low cost sensor equipped with embedded vision logics that can be used for building Smart Camera Networks (SCN) for applications in Intelligent Transportation System (ITS), in particular, we describe an ad hoc computer vision algorithm for estimation of traffic flow and discuss the findings obtained through an actual field test.\",\"PeriodicalId\":124818,\"journal\":{\"name\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2015.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

城市环境中交通的毛细管监测是智能城市中更可持续的交通的关键。在这种情况下,使用低成本技术是强制性的,以避免可扩展性问题,这将阻碍在整个城市范围内采用监控解决方案。在本文中,我们介绍了一种低功耗和低成本的传感器,配备嵌入式视觉逻辑,可用于构建智能摄像头网络(SCN),用于智能交通系统(ITS)的应用,特别是我们描述了一种用于估计交通流量的临时计算机视觉算法,并讨论了通过实际现场测试获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer Vision on Embedded Sensors for Traffic Flow Monitoring
Capillary monitoring of traffic in urban environment is key to a more sustainable mobility in smart cities. In this context, the use of low cost technologies is mandatory to avoid scalability issues that would prevent the adoption of monitoring solutions at the full city scale. In this paper, we introduce a low power and low cost sensor equipped with embedded vision logics that can be used for building Smart Camera Networks (SCN) for applications in Intelligent Transportation System (ITS), in particular, we describe an ad hoc computer vision algorithm for estimation of traffic flow and discuss the findings obtained through an actual field test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信