智能工作负载分配到云服务器的实验

Lan Wang, E. Gelenbe
{"title":"智能工作负载分配到云服务器的实验","authors":"Lan Wang, E. Gelenbe","doi":"10.1109/NCCA.2015.15","DOIUrl":null,"url":null,"abstract":"We present experiments that compare three on-line real time techniques for task allocation to different cloud servers: an adaptive random neural network (RNN) based on reinforcement algorithm, an algorithm based on \"sensible routing'', one which uses a simple analytical model to select the server is estimated to give the best response as a function of workload, and round-robin task allocation. Measurements indicate that the RNN based algorithm can make accurate decisions when it exploits frequent measurement updates.","PeriodicalId":309782,"journal":{"name":"2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Experiments with Smart Workload Allocation to Cloud Servers\",\"authors\":\"Lan Wang, E. Gelenbe\",\"doi\":\"10.1109/NCCA.2015.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present experiments that compare three on-line real time techniques for task allocation to different cloud servers: an adaptive random neural network (RNN) based on reinforcement algorithm, an algorithm based on \\\"sensible routing'', one which uses a simple analytical model to select the server is estimated to give the best response as a function of workload, and round-robin task allocation. Measurements indicate that the RNN based algorithm can make accurate decisions when it exploits frequent measurement updates.\",\"PeriodicalId\":309782,\"journal\":{\"name\":\"2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCCA.2015.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCCA.2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们提出的实验比较了三种在线实时技术的任务分配到不同的云服务器:一种基于强化算法的自适应随机神经网络(RNN),一种基于“感知路由”的算法,一种使用简单的分析模型来选择服务器,估计给出最佳响应作为工作量的函数,以及循环任务分配。测量结果表明,基于RNN的算法在利用频繁的测量更新时可以做出准确的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiments with Smart Workload Allocation to Cloud Servers
We present experiments that compare three on-line real time techniques for task allocation to different cloud servers: an adaptive random neural network (RNN) based on reinforcement algorithm, an algorithm based on "sensible routing'', one which uses a simple analytical model to select the server is estimated to give the best response as a function of workload, and round-robin task allocation. Measurements indicate that the RNN based algorithm can make accurate decisions when it exploits frequent measurement updates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信