图像欧氏距离的快速算法

Bing Sun, Jufu Feng
{"title":"图像欧氏距离的快速算法","authors":"Bing Sun, Jufu Feng","doi":"10.1109/CCPR.2008.32","DOIUrl":null,"url":null,"abstract":"Determining, or selecting a distance measure over the input feature space is a fundamental problem in pattern recognition. A notable metric, called the image euclidean distance (IMED) was proposed by Wang et al. [5], which is demonstrated consistent performance improvements in many real-world problems. In this paper, we present a fast implementation of IMED, which is referred as the convolution standardizing transform (CST). It can reduce the space complexity from O(n<sub>1</sub> <sup>2</sup>n<sub>2</sub> <sup>2</sup> ) to O(1) , and the time complexity from O(n<sub>1</sub> <sup>2</sup>n<sub>2</sub> <sup>2</sup> ) to O(n<sub>1</sub>n<sub>2</sub>), for n<sub>1</sub> X n<sub>2</sub> images. Both theoretical analysis and experimental results show the efficiency of our algorithm.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Fast Algorithm for Image Euclidean Distance\",\"authors\":\"Bing Sun, Jufu Feng\",\"doi\":\"10.1109/CCPR.2008.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining, or selecting a distance measure over the input feature space is a fundamental problem in pattern recognition. A notable metric, called the image euclidean distance (IMED) was proposed by Wang et al. [5], which is demonstrated consistent performance improvements in many real-world problems. In this paper, we present a fast implementation of IMED, which is referred as the convolution standardizing transform (CST). It can reduce the space complexity from O(n<sub>1</sub> <sup>2</sup>n<sub>2</sub> <sup>2</sup> ) to O(1) , and the time complexity from O(n<sub>1</sub> <sup>2</sup>n<sub>2</sub> <sup>2</sup> ) to O(n<sub>1</sub>n<sub>2</sub>), for n<sub>1</sub> X n<sub>2</sub> images. Both theoretical analysis and experimental results show the efficiency of our algorithm.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

确定或选择输入特征空间的距离度量是模式识别中的一个基本问题。Wang 等人[5]提出了一种著名的度量方法,即图像欧几里得距离(IMED),它在许多实际问题中表现出了一致的性能改进。本文提出了一种 IMED 的快速实现方法,即卷积标准化变换(CST)。它能将 n1 X n2 图像的空间复杂度从 O(n1 2n2 2 ) 降低到 O(1),时间复杂度从 O(n1 2n2 2 ) 降低到 O(n1n2)。理论分析和实验结果都表明了我们算法的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast Algorithm for Image Euclidean Distance
Determining, or selecting a distance measure over the input feature space is a fundamental problem in pattern recognition. A notable metric, called the image euclidean distance (IMED) was proposed by Wang et al. [5], which is demonstrated consistent performance improvements in many real-world problems. In this paper, we present a fast implementation of IMED, which is referred as the convolution standardizing transform (CST). It can reduce the space complexity from O(n1 2n2 2 ) to O(1) , and the time complexity from O(n1 2n2 2 ) to O(n1n2), for n1 X n2 images. Both theoretical analysis and experimental results show the efficiency of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信