结肠NBI内窥镜中单FCN计算机辅助诊断系统的开发

Daisuke Katayama, Yongfei Wu, Tetsushi Koide, Toru Tamaki, Shigeto Yoshida, Shin Morimoto, Yuki Okamoto, S. Oka, Shinji Tanaka
{"title":"结肠NBI内窥镜中单FCN计算机辅助诊断系统的开发","authors":"Daisuke Katayama, Yongfei Wu, Tetsushi Koide, Toru Tamaki, Shigeto Yoshida, Shin Morimoto, Yuki Okamoto, S. Oka, Shinji Tanaka","doi":"10.1109/ITC-CSCC58803.2023.10212877","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a single fully convolutional network (FCN) capable of indicating the detailed inference results for Computer-Aided Diagnosis (CAD) in colon Narrow Band Imaging (NBI) endoscopy. The proposed CAD system is capable of real-time processing with a latency of 0.05 seconds and 20 frames per second and can detect more than 80% of lesions even for non-magnified images. Classification results at the pixel with the highest confidence level at resulted in a diagnosis with 73% agreement with histopathologic findings.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Computer-Aided Diagnosis System Using Single FCN Capable for Indicating Detailed Inference Results in Colon NBI Endoscopy\",\"authors\":\"Daisuke Katayama, Yongfei Wu, Tetsushi Koide, Toru Tamaki, Shigeto Yoshida, Shin Morimoto, Yuki Okamoto, S. Oka, Shinji Tanaka\",\"doi\":\"10.1109/ITC-CSCC58803.2023.10212877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a single fully convolutional network (FCN) capable of indicating the detailed inference results for Computer-Aided Diagnosis (CAD) in colon Narrow Band Imaging (NBI) endoscopy. The proposed CAD system is capable of real-time processing with a latency of 0.05 seconds and 20 frames per second and can detect more than 80% of lesions even for non-magnified images. Classification results at the pixel with the highest confidence level at resulted in a diagnosis with 73% agreement with histopathologic findings.\",\"PeriodicalId\":220939,\"journal\":{\"name\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC-CSCC58803.2023.10212877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个单一的全卷积网络(FCN),能够指示结肠窄带成像(NBI)内窥镜中计算机辅助诊断(CAD)的详细推理结果。所提出的CAD系统能够实时处理,延迟为0.05秒,每秒20帧,即使对于未放大的图像,也可以检测到80%以上的病变。在具有最高置信水平的像素上的分类结果导致诊断与组织病理学结果的一致性为73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Computer-Aided Diagnosis System Using Single FCN Capable for Indicating Detailed Inference Results in Colon NBI Endoscopy
In this paper, we propose a single fully convolutional network (FCN) capable of indicating the detailed inference results for Computer-Aided Diagnosis (CAD) in colon Narrow Band Imaging (NBI) endoscopy. The proposed CAD system is capable of real-time processing with a latency of 0.05 seconds and 20 frames per second and can detect more than 80% of lesions even for non-magnified images. Classification results at the pixel with the highest confidence level at resulted in a diagnosis with 73% agreement with histopathologic findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信