感应驱动衬垫产生兆赫磁场的分析

J. Slough, A. Pancotti, D. Kirtley
{"title":"感应驱动衬垫产生兆赫磁场的分析","authors":"J. Slough, A. Pancotti, D. Kirtley","doi":"10.1109/MEGAGAUSS.2012.6781434","DOIUrl":null,"url":null,"abstract":"A process for achieving megagauss fields to reach fusion gain conditions based on the compression of a Field Reversed Configuration plasmoid (FRC) is analyzed. The essential element for achieving this end is the inductively driven implosion of several thin bands of metal, initially at large radius, to achieve the 3D convergence and mass required. To understand the issues involved with this approach, as well as design an experimental test, a 1D analytical model was developed and 3D ANSYS Explicit Dynamics® of the liner implosion were carried out. The inductive coupling and drive efficiency of the compression for a single liner was evaluated with the one dimensional model which included the key circuit, magnetic field and liner parameters. The model was then used to characterize the liner motion as a function of liner mass, resistivity, stored energy, coil voltage and initial magnetic field. The stability and structural behavior of multiple liners was studied with the 3D ANSYS code. Techniques for controlling liner bucking as well as liner rotation for Rayleigh-Taylor stability were formulated and examined with these codes.","PeriodicalId":299352,"journal":{"name":"2012 14th International Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of inductively driven liners for the generation of megagauss magnetic fields\",\"authors\":\"J. Slough, A. Pancotti, D. Kirtley\",\"doi\":\"10.1109/MEGAGAUSS.2012.6781434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A process for achieving megagauss fields to reach fusion gain conditions based on the compression of a Field Reversed Configuration plasmoid (FRC) is analyzed. The essential element for achieving this end is the inductively driven implosion of several thin bands of metal, initially at large radius, to achieve the 3D convergence and mass required. To understand the issues involved with this approach, as well as design an experimental test, a 1D analytical model was developed and 3D ANSYS Explicit Dynamics® of the liner implosion were carried out. The inductive coupling and drive efficiency of the compression for a single liner was evaluated with the one dimensional model which included the key circuit, magnetic field and liner parameters. The model was then used to characterize the liner motion as a function of liner mass, resistivity, stored energy, coil voltage and initial magnetic field. The stability and structural behavior of multiple liners was studied with the 3D ANSYS code. Techniques for controlling liner bucking as well as liner rotation for Rayleigh-Taylor stability were formulated and examined with these codes.\",\"PeriodicalId\":299352,\"journal\":{\"name\":\"2012 14th International Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 14th International Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEGAGAUSS.2012.6781434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th International Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEGAGAUSS.2012.6781434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

分析了一种利用压缩场反位态等离子体(FRC)来实现超高压场并达到聚变增益条件的过程。实现这一目标的基本要素是感应驱动的几条金属薄带内爆,最初是在大半径处,以实现所需的三维收敛和质量。为了理解这种方法所涉及的问题,并设计一个实验测试,开发了一个一维分析模型,并对内衬内爆进行了3D ANSYS Explicit Dynamics®。利用包含关键电路、磁场和直线参数的一维模型,对单直线压缩的电感耦合和驱动效率进行了评价。然后利用该模型将直线运动表征为直线质量、电阻率、储能、线圈电压和初始磁场的函数。利用三维ANSYS软件对多层衬垫的稳定性和结构性能进行了研究。为保证瑞利-泰勒稳定,制定了控制衬管屈曲和衬管旋转的技术,并用这些规范进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of inductively driven liners for the generation of megagauss magnetic fields
A process for achieving megagauss fields to reach fusion gain conditions based on the compression of a Field Reversed Configuration plasmoid (FRC) is analyzed. The essential element for achieving this end is the inductively driven implosion of several thin bands of metal, initially at large radius, to achieve the 3D convergence and mass required. To understand the issues involved with this approach, as well as design an experimental test, a 1D analytical model was developed and 3D ANSYS Explicit Dynamics® of the liner implosion were carried out. The inductive coupling and drive efficiency of the compression for a single liner was evaluated with the one dimensional model which included the key circuit, magnetic field and liner parameters. The model was then used to characterize the liner motion as a function of liner mass, resistivity, stored energy, coil voltage and initial magnetic field. The stability and structural behavior of multiple liners was studied with the 3D ANSYS code. Techniques for controlling liner bucking as well as liner rotation for Rayleigh-Taylor stability were formulated and examined with these codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信