基于二进制仪表和指令流特征提取的程序分类新方法

Baojiang Cui, M. Cao, Shilei Chen, Weikong Qi
{"title":"基于二进制仪表和指令流特征提取的程序分类新方法","authors":"Baojiang Cui, M. Cao, Shilei Chen, Weikong Qi","doi":"10.1109/BWCCA.2015.64","DOIUrl":null,"url":null,"abstract":"With the development of Internet technology, more and more unknown programs appears in the network environment, the detection and classification technology is increasingly becoming an important technology in the field of information security. This paper presents a new method of program classification using binary instrumentation, dynamic instruction flow feature extraction, auto feature selection and Naive Bayes classifier technology. Finally we use two-class classification, five categories, and twenty-class classification experiments to prove the correctness of the method and present the future direction for improvement of the method.","PeriodicalId":193597,"journal":{"name":"2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Program Classification Method Based on Binary Instrumentation and Instruction Flow Feature Extraction\",\"authors\":\"Baojiang Cui, M. Cao, Shilei Chen, Weikong Qi\",\"doi\":\"10.1109/BWCCA.2015.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of Internet technology, more and more unknown programs appears in the network environment, the detection and classification technology is increasingly becoming an important technology in the field of information security. This paper presents a new method of program classification using binary instrumentation, dynamic instruction flow feature extraction, auto feature selection and Naive Bayes classifier technology. Finally we use two-class classification, five categories, and twenty-class classification experiments to prove the correctness of the method and present the future direction for improvement of the method.\",\"PeriodicalId\":193597,\"journal\":{\"name\":\"2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BWCCA.2015.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWCCA.2015.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着互联网技术的发展,越来越多的未知程序出现在网络环境中,检测与分类技术日益成为信息安全领域的一项重要技术。本文提出了一种基于二进制仪表、动态指令流特征提取、自动特征选择和朴素贝叶斯分类器技术的程序分类新方法。最后通过两类分类、五类分类和二十类分类实验证明了该方法的正确性,并提出了该方法未来的改进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Program Classification Method Based on Binary Instrumentation and Instruction Flow Feature Extraction
With the development of Internet technology, more and more unknown programs appears in the network environment, the detection and classification technology is increasingly becoming an important technology in the field of information security. This paper presents a new method of program classification using binary instrumentation, dynamic instruction flow feature extraction, auto feature selection and Naive Bayes classifier technology. Finally we use two-class classification, five categories, and twenty-class classification experiments to prove the correctness of the method and present the future direction for improvement of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信