基于上下文类型的逻辑关系案例研究

Andrew Cave, B. Pientka
{"title":"基于上下文类型的逻辑关系案例研究","authors":"Andrew Cave, B. Pientka","doi":"10.4204/EPTCS.185.3","DOIUrl":null,"url":null,"abstract":"Proofs by logical relations play a key role to establish rich properties such as normalization or contextual equivalence. They are also challenging to mechanize. In this paper, we describe the completeness proof of algorithmic equality for simply typed lambda-terms by Crary where we reason about logically equivalent terms in the proof environment Beluga. There are three key aspects we rely upon: 1) we encode lambda-terms together with their operational semantics and algorithmic equality using higher-order abstract syntax 2) we directly encode the corresponding logical equivalence of well-typed lambda-terms using recursive types and higher-order functions 3) we exploit Beluga's support for contexts and the equational theory of simultaneous substitutions. This leads to a direct and compact mechanization, demonstrating Beluga's strength at formalizing logical relations proofs.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Case Study on Logical Relations using Contextual Types\",\"authors\":\"Andrew Cave, B. Pientka\",\"doi\":\"10.4204/EPTCS.185.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proofs by logical relations play a key role to establish rich properties such as normalization or contextual equivalence. They are also challenging to mechanize. In this paper, we describe the completeness proof of algorithmic equality for simply typed lambda-terms by Crary where we reason about logically equivalent terms in the proof environment Beluga. There are three key aspects we rely upon: 1) we encode lambda-terms together with their operational semantics and algorithmic equality using higher-order abstract syntax 2) we directly encode the corresponding logical equivalence of well-typed lambda-terms using recursive types and higher-order functions 3) we exploit Beluga's support for contexts and the equational theory of simultaneous substitutions. This leads to a direct and compact mechanization, demonstrating Beluga's strength at formalizing logical relations proofs.\",\"PeriodicalId\":262518,\"journal\":{\"name\":\"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.185.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.185.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

逻辑关系证明在建立规范化或上下文等价等丰富属性方面起着关键作用。它们的机械化也具有挑战性。本文描述了用Crary对简单类型lambda项的算法等式的完备性证明,并在证明环境Beluga中对逻辑等价项进行了推理。我们依赖于三个关键方面:1)我们使用高阶抽象语法编码lambda-terms及其操作语义和算法等式;2)我们使用递归类型和高阶函数直接编码类型良好的lambda-terms的相应逻辑等价;3)我们利用Beluga对上下文的支持和同时替换的等式理论。这导致了直接和紧凑的机械化,展示了Beluga在形式化逻辑关系证明方面的实力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Case Study on Logical Relations using Contextual Types
Proofs by logical relations play a key role to establish rich properties such as normalization or contextual equivalence. They are also challenging to mechanize. In this paper, we describe the completeness proof of algorithmic equality for simply typed lambda-terms by Crary where we reason about logically equivalent terms in the proof environment Beluga. There are three key aspects we rely upon: 1) we encode lambda-terms together with their operational semantics and algorithmic equality using higher-order abstract syntax 2) we directly encode the corresponding logical equivalence of well-typed lambda-terms using recursive types and higher-order functions 3) we exploit Beluga's support for contexts and the equational theory of simultaneous substitutions. This leads to a direct and compact mechanization, demonstrating Beluga's strength at formalizing logical relations proofs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信