三维重建与射影八叉树和极几何

B. Garcia, P. Brunet
{"title":"三维重建与射影八叉树和极几何","authors":"B. Garcia, P. Brunet","doi":"10.1109/ICCV.1998.710849","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of generating a 3D octree-like structure with the help of epipolar geometry within a projective framework is addressed. After a brief introduction on the basics of octrees and epipolar geometry, the new concept called \"projective octree\" is introduced together with an algorithm for building this projective structure. Finally, some results of the implementations are presented in the last section together with the conclusions and future work.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"3D reconstruction with projective octrees and epipolar geometry\",\"authors\":\"B. Garcia, P. Brunet\",\"doi\":\"10.1109/ICCV.1998.710849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of generating a 3D octree-like structure with the help of epipolar geometry within a projective framework is addressed. After a brief introduction on the basics of octrees and epipolar geometry, the new concept called \\\"projective octree\\\" is introduced together with an algorithm for building this projective structure. Finally, some results of the implementations are presented in the last section together with the conclusions and future work.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文讨论了在射影框架内利用极极几何生成三维八叉形结构的问题。在简要介绍了八叉树和极几何的基础知识之后,介绍了“射影八叉树”的新概念以及构建该射影结构的算法。最后,在最后一节给出了一些实现结果,以及结论和未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D reconstruction with projective octrees and epipolar geometry
In this paper, the problem of generating a 3D octree-like structure with the help of epipolar geometry within a projective framework is addressed. After a brief introduction on the basics of octrees and epipolar geometry, the new concept called "projective octree" is introduced together with an algorithm for building this projective structure. Finally, some results of the implementations are presented in the last section together with the conclusions and future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信