Ruozhou Yu, G. Xue, Yinxin Wan, Jian Tang, Dejun Yang, Yusheng Ji
{"title":"时变边缘网络的鲁棒资源配置","authors":"Ruozhou Yu, G. Xue, Yinxin Wan, Jian Tang, Dejun Yang, Yusheng Ji","doi":"10.1145/3397166.3409146","DOIUrl":null,"url":null,"abstract":"Edge computing is one of the revolutionary technologies that enable high-performance and low-latency modern applications, such as smart cities, connected vehicles, etc. Yet its adoption has been limited by factors including high cost of edge resources, heterogeneous and fluctuating demands, and lack of reliability. In this paper, we study resource provisioning in edge computing, taking into account these different factors. First, based on observations from real demand traces, we propose a time-varying stochastic model to capture the time-dependent and uncertain demand and network dynamics in an edge network. We then apply a novel robustness model that accounts for both expected and worst-case performance of a service. Based on these models, we formulate edge provisioning as a multi-stage stochastic optimization problem. The problem is NP-hard even in the deterministic case. Leveraging the multi-stage structure, we apply nested Benders decomposition to solve the problem. We also describe several efficiency enhancement techniques, including a novel technique for quickly solving the large number of decomposed subproblems. Finally, we present results from real dataset-based simulations, which demonstrate the advantages of the proposed models, algorithm and techniques.","PeriodicalId":122577,"journal":{"name":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust resource provisioning in time-varying edge networks\",\"authors\":\"Ruozhou Yu, G. Xue, Yinxin Wan, Jian Tang, Dejun Yang, Yusheng Ji\",\"doi\":\"10.1145/3397166.3409146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing is one of the revolutionary technologies that enable high-performance and low-latency modern applications, such as smart cities, connected vehicles, etc. Yet its adoption has been limited by factors including high cost of edge resources, heterogeneous and fluctuating demands, and lack of reliability. In this paper, we study resource provisioning in edge computing, taking into account these different factors. First, based on observations from real demand traces, we propose a time-varying stochastic model to capture the time-dependent and uncertain demand and network dynamics in an edge network. We then apply a novel robustness model that accounts for both expected and worst-case performance of a service. Based on these models, we formulate edge provisioning as a multi-stage stochastic optimization problem. The problem is NP-hard even in the deterministic case. Leveraging the multi-stage structure, we apply nested Benders decomposition to solve the problem. We also describe several efficiency enhancement techniques, including a novel technique for quickly solving the large number of decomposed subproblems. Finally, we present results from real dataset-based simulations, which demonstrate the advantages of the proposed models, algorithm and techniques.\",\"PeriodicalId\":122577,\"journal\":{\"name\":\"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397166.3409146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397166.3409146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust resource provisioning in time-varying edge networks
Edge computing is one of the revolutionary technologies that enable high-performance and low-latency modern applications, such as smart cities, connected vehicles, etc. Yet its adoption has been limited by factors including high cost of edge resources, heterogeneous and fluctuating demands, and lack of reliability. In this paper, we study resource provisioning in edge computing, taking into account these different factors. First, based on observations from real demand traces, we propose a time-varying stochastic model to capture the time-dependent and uncertain demand and network dynamics in an edge network. We then apply a novel robustness model that accounts for both expected and worst-case performance of a service. Based on these models, we formulate edge provisioning as a multi-stage stochastic optimization problem. The problem is NP-hard even in the deterministic case. Leveraging the multi-stage structure, we apply nested Benders decomposition to solve the problem. We also describe several efficiency enhancement techniques, including a novel technique for quickly solving the large number of decomposed subproblems. Finally, we present results from real dataset-based simulations, which demonstrate the advantages of the proposed models, algorithm and techniques.