Marcin Dymczyk, E. Stumm, Juan I. Nieto, R. Siegwart, Igor Gilitschenski
{"title":"这种情况会持续下去吗?学习长期视觉定位的稳定特征","authors":"Marcin Dymczyk, E. Stumm, Juan I. Nieto, R. Siegwart, Igor Gilitschenski","doi":"10.3929/ETHZ-A-010819535","DOIUrl":null,"url":null,"abstract":"An increasing number of simultaneous localization and mapping (SLAM) systems are using appearance-based localization to improve the quality of pose estimates. However, with the growing time-spans and size of the areas we want to cover, appearance-based maps are often becoming too large to handle and are consisting of features that are not always reliable for localization purposes. This paper presents a method for selecting map features that are persistent over time and thus suited for long-term localization. Our methodology relies on a CNN classifier based on image patches and depth maps for recognizing which features are suitable for life-long matchability. Thus, the classifier not only considers the appearance of a feature but also takes into account its expected lifetime. As a result, our feature selection approach produces more compact maps with a high fraction of temporally-stable features compared to the current state-of-the-art, while rejecting unstable features that typically harm localization. Our approach is validated on indoor and outdoor datasets, that span over a period of several months.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Will It Last? Learning Stable Features for Long-Term Visual Localization\",\"authors\":\"Marcin Dymczyk, E. Stumm, Juan I. Nieto, R. Siegwart, Igor Gilitschenski\",\"doi\":\"10.3929/ETHZ-A-010819535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increasing number of simultaneous localization and mapping (SLAM) systems are using appearance-based localization to improve the quality of pose estimates. However, with the growing time-spans and size of the areas we want to cover, appearance-based maps are often becoming too large to handle and are consisting of features that are not always reliable for localization purposes. This paper presents a method for selecting map features that are persistent over time and thus suited for long-term localization. Our methodology relies on a CNN classifier based on image patches and depth maps for recognizing which features are suitable for life-long matchability. Thus, the classifier not only considers the appearance of a feature but also takes into account its expected lifetime. As a result, our feature selection approach produces more compact maps with a high fraction of temporally-stable features compared to the current state-of-the-art, while rejecting unstable features that typically harm localization. Our approach is validated on indoor and outdoor datasets, that span over a period of several months.\",\"PeriodicalId\":425304,\"journal\":{\"name\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3929/ETHZ-A-010819535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-010819535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Will It Last? Learning Stable Features for Long-Term Visual Localization
An increasing number of simultaneous localization and mapping (SLAM) systems are using appearance-based localization to improve the quality of pose estimates. However, with the growing time-spans and size of the areas we want to cover, appearance-based maps are often becoming too large to handle and are consisting of features that are not always reliable for localization purposes. This paper presents a method for selecting map features that are persistent over time and thus suited for long-term localization. Our methodology relies on a CNN classifier based on image patches and depth maps for recognizing which features are suitable for life-long matchability. Thus, the classifier not only considers the appearance of a feature but also takes into account its expected lifetime. As a result, our feature selection approach produces more compact maps with a high fraction of temporally-stable features compared to the current state-of-the-art, while rejecting unstable features that typically harm localization. Our approach is validated on indoor and outdoor datasets, that span over a period of several months.