对称FastICA算法的收敛性

E. Oja
{"title":"对称FastICA算法的收敛性","authors":"E. Oja","doi":"10.1109/ICONIP.2002.1202844","DOIUrl":null,"url":null,"abstract":"The FastICA algorithm is one of the most popular methods to solve problems in independent component analysis (ICA) and blind source separation. It has been shown experimentally that it outperforms most of the commonly used ICA algorithms in convergence speed. A rigorous convergence analysis has been presented only for the so-called one-unit case, in which just one of the rows of the separating matrix is considered. However, in the FastICA algorithm, there is also an explicit normalization step, and it may be questioned whether the extra rotation caused by the normalization will effect the convergence speed. The purpose of this paper is to show that this is not the case and the good convergence properties of the one-unit case are also shared by the full algorithm with symmetrical normalization.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Convergence of the symmetrical FastICA algorithm\",\"authors\":\"E. Oja\",\"doi\":\"10.1109/ICONIP.2002.1202844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The FastICA algorithm is one of the most popular methods to solve problems in independent component analysis (ICA) and blind source separation. It has been shown experimentally that it outperforms most of the commonly used ICA algorithms in convergence speed. A rigorous convergence analysis has been presented only for the so-called one-unit case, in which just one of the rows of the separating matrix is considered. However, in the FastICA algorithm, there is also an explicit normalization step, and it may be questioned whether the extra rotation caused by the normalization will effect the convergence speed. The purpose of this paper is to show that this is not the case and the good convergence properties of the one-unit case are also shared by the full algorithm with symmetrical normalization.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1202844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

FastICA算法是解决独立分量分析(ICA)和盲源分离问题最常用的方法之一。实验表明,它在收敛速度上优于大多数常用的ICA算法。一个严格的收敛分析已经提出了所谓的单单元情况下,其中只考虑分离矩阵的一行。然而,在FastICA算法中,也有一个明确的归一化步骤,可能会有人质疑归一化带来的额外旋转是否会影响收敛速度。本文的目的是证明这种情况并非如此,并且对称归一化的完整算法也具有单单元情况下良好的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of the symmetrical FastICA algorithm
The FastICA algorithm is one of the most popular methods to solve problems in independent component analysis (ICA) and blind source separation. It has been shown experimentally that it outperforms most of the commonly used ICA algorithms in convergence speed. A rigorous convergence analysis has been presented only for the so-called one-unit case, in which just one of the rows of the separating matrix is considered. However, in the FastICA algorithm, there is also an explicit normalization step, and it may be questioned whether the extra rotation caused by the normalization will effect the convergence speed. The purpose of this paper is to show that this is not the case and the good convergence properties of the one-unit case are also shared by the full algorithm with symmetrical normalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信