H. Parmar, Xiangyu Liu, Hua Xie, B. Nutter, S. Mitra, L. R. Long, Sameer Kiran Antani
{"title":"f-Sim:一个准真实的fMRI模拟工具箱,使用数字脑幻象和模拟噪声","authors":"H. Parmar, Xiangyu Liu, Hua Xie, B. Nutter, S. Mitra, L. R. Long, Sameer Kiran Antani","doi":"10.1109/SSIAI.2018.8470346","DOIUrl":null,"url":null,"abstract":"Functional Magnetic Resonance Imaging (fMRI) uses a noninvasive technique to study the functionality of the human brain by measuring the Blood Oxygenation Level Dependent (BOLD) signal and has been researched for decades. However, some potential problems still remain in achieving correct interpretation of BOLD-induced signals due to quite low signal levels, high noise levels, artifacts, lack of ground truth and a number of other inherent problems. We present here the development of a MATLAB based fMRI simulator (f-Sim) using digital phantom brain that generates quasi-realistic 4D fMRI volumes including modeled noise. Such 4D fMRI data can serve to hypothesize ground truth for experimentally acquired data under both task-evoked and resting state designs in investigation of localized or whole brain activation and functional connectivity patterns.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"f-Sim: A quasi-realistic fMRI simulation toolbox using digital brain phantom and modeled noise\",\"authors\":\"H. Parmar, Xiangyu Liu, Hua Xie, B. Nutter, S. Mitra, L. R. Long, Sameer Kiran Antani\",\"doi\":\"10.1109/SSIAI.2018.8470346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional Magnetic Resonance Imaging (fMRI) uses a noninvasive technique to study the functionality of the human brain by measuring the Blood Oxygenation Level Dependent (BOLD) signal and has been researched for decades. However, some potential problems still remain in achieving correct interpretation of BOLD-induced signals due to quite low signal levels, high noise levels, artifacts, lack of ground truth and a number of other inherent problems. We present here the development of a MATLAB based fMRI simulator (f-Sim) using digital phantom brain that generates quasi-realistic 4D fMRI volumes including modeled noise. Such 4D fMRI data can serve to hypothesize ground truth for experimentally acquired data under both task-evoked and resting state designs in investigation of localized or whole brain activation and functional connectivity patterns.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
f-Sim: A quasi-realistic fMRI simulation toolbox using digital brain phantom and modeled noise
Functional Magnetic Resonance Imaging (fMRI) uses a noninvasive technique to study the functionality of the human brain by measuring the Blood Oxygenation Level Dependent (BOLD) signal and has been researched for decades. However, some potential problems still remain in achieving correct interpretation of BOLD-induced signals due to quite low signal levels, high noise levels, artifacts, lack of ground truth and a number of other inherent problems. We present here the development of a MATLAB based fMRI simulator (f-Sim) using digital phantom brain that generates quasi-realistic 4D fMRI volumes including modeled noise. Such 4D fMRI data can serve to hypothesize ground truth for experimentally acquired data under both task-evoked and resting state designs in investigation of localized or whole brain activation and functional connectivity patterns.