Toby Simpson, D. Pasadakis, D. Kourounis, K. Fujita, Takuma Yamaguchi, T. Ichimura, O. Schenk
{"title":"基于图p-拉普拉斯算子的平衡图划分精化","authors":"Toby Simpson, D. Pasadakis, D. Kourounis, K. Fujita, Takuma Yamaguchi, T. Ichimura, O. Schenk","doi":"10.1145/3218176.3218232","DOIUrl":null,"url":null,"abstract":"A continuous formulation of the optimal 2-way graph partitioning based on the p-norm minimization of the graph Laplacian Rayleigh quotient is presented, which provides a sharp approximation to the balanced graph partitioning problem, the optimality of which is known to be NP-hard. The minimization is initialized from a cut provided by a state-of-the-art multilevel recursive bisection algorithm, and then a continuation approach reduces the p-norm from a 2-norm towards a 1-norm, employing for each value of p a feasibility-preserving steepest-descent method that converges on the p-Laplacian eigenvector. A filter favors iterates advancing towards minimum edgecut and partition load imbalance. The complexity of the suggested approach is linear in graph edges. The simplicity of the steepest-descent algorithm renders the overall approach highly scalable and efficient in parallel distributed architectures. Parallel implementation of recursive bisection on multi-core CPUs and GPUs are presented for large-scale graphs with up to 1.9 billion tetrahedra. The suggested approach exhibits improvements of up to 52.8% over METIS for graphs originating from triangular Delaunay meshes, 34.7% over METIS and 21.9% over KaHIP for power network graphs, 40.8% over METIS and 20.6% over KaHIP for sparse matrix graphs, and finally 93.2% over METIS for graphs emerging from social networks.","PeriodicalId":174137,"journal":{"name":"Proceedings of the Platform for Advanced Scientific Computing Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Balanced Graph Partition Refinement using the Graph p-Laplacian\",\"authors\":\"Toby Simpson, D. Pasadakis, D. Kourounis, K. Fujita, Takuma Yamaguchi, T. Ichimura, O. Schenk\",\"doi\":\"10.1145/3218176.3218232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A continuous formulation of the optimal 2-way graph partitioning based on the p-norm minimization of the graph Laplacian Rayleigh quotient is presented, which provides a sharp approximation to the balanced graph partitioning problem, the optimality of which is known to be NP-hard. The minimization is initialized from a cut provided by a state-of-the-art multilevel recursive bisection algorithm, and then a continuation approach reduces the p-norm from a 2-norm towards a 1-norm, employing for each value of p a feasibility-preserving steepest-descent method that converges on the p-Laplacian eigenvector. A filter favors iterates advancing towards minimum edgecut and partition load imbalance. The complexity of the suggested approach is linear in graph edges. The simplicity of the steepest-descent algorithm renders the overall approach highly scalable and efficient in parallel distributed architectures. Parallel implementation of recursive bisection on multi-core CPUs and GPUs are presented for large-scale graphs with up to 1.9 billion tetrahedra. The suggested approach exhibits improvements of up to 52.8% over METIS for graphs originating from triangular Delaunay meshes, 34.7% over METIS and 21.9% over KaHIP for power network graphs, 40.8% over METIS and 20.6% over KaHIP for sparse matrix graphs, and finally 93.2% over METIS for graphs emerging from social networks.\",\"PeriodicalId\":174137,\"journal\":{\"name\":\"Proceedings of the Platform for Advanced Scientific Computing Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Platform for Advanced Scientific Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3218176.3218232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Platform for Advanced Scientific Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218176.3218232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Balanced Graph Partition Refinement using the Graph p-Laplacian
A continuous formulation of the optimal 2-way graph partitioning based on the p-norm minimization of the graph Laplacian Rayleigh quotient is presented, which provides a sharp approximation to the balanced graph partitioning problem, the optimality of which is known to be NP-hard. The minimization is initialized from a cut provided by a state-of-the-art multilevel recursive bisection algorithm, and then a continuation approach reduces the p-norm from a 2-norm towards a 1-norm, employing for each value of p a feasibility-preserving steepest-descent method that converges on the p-Laplacian eigenvector. A filter favors iterates advancing towards minimum edgecut and partition load imbalance. The complexity of the suggested approach is linear in graph edges. The simplicity of the steepest-descent algorithm renders the overall approach highly scalable and efficient in parallel distributed architectures. Parallel implementation of recursive bisection on multi-core CPUs and GPUs are presented for large-scale graphs with up to 1.9 billion tetrahedra. The suggested approach exhibits improvements of up to 52.8% over METIS for graphs originating from triangular Delaunay meshes, 34.7% over METIS and 21.9% over KaHIP for power network graphs, 40.8% over METIS and 20.6% over KaHIP for sparse matrix graphs, and finally 93.2% over METIS for graphs emerging from social networks.